
SemWiki

A RESTful Distributed Wiki Architecture

Max Völkel
Institute of Applied Computer Science and Formal Description Methods (AIFB)

Kollegiengebäude am Ehrenhof, Englerstrasse 11
D-76131 Karlsruhe, Germany

mvo@aifb.uni-karlsruhe.de

ABSTRACT
Current Wiki engines are mostly monolithic applications
which intermingle parser, user interface and data manage-
ment backend. In this paper we show how these three com-
ponents can be realised as lightweight, REST-style web ser-
vices. We explain why this separation is useful and how
the wiki community benefits from such an approach. Addi-
tionally, the presented wiki allows semantic statements and
queries over the model.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.12@@@ [Software Engineering]: Interoperability

Keywords
Wiki, REST, System Architecture, Web Service, Semantic
Web

1. INTRODUCTION
Wikis have been proven by their continuing usage to be

a useful tool for collaborative note-taking. Several efforts
try to bring more database-like structures and search ca-
pabilities to wikis. The approach presented in this paper
is characterised by two main contributions: First, the sys-
tem architecture is realised as a distributed set of REST
(REpresentational State Transfer)1-style web services. Sec-
ond, the resulting wiki allows to create and query RDF-style
statements within the wiki paradigm2. This paper will con-
centrate on the distributed architecture of SemWiki.

2. DISTRIBUTED WIKI ARCHITECTURE
Wikis are popular due to their simplistic approach. The

time needed to learn how to use a wiki is less than for most

1A term coined by Roy Fielding
2RDF Schema for the REST Wiki available at
http://purl.org/net/xamde/ns/semwiki

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym’05 San Diego, California USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

<!ELEMENT Page (PageName, PageContent)>

<!ELEMENT PageName (Lexical)>

<!ELEMENT PageContent (Item*)>

<!ELEMENT Lexical (#PCDATA)>

<!ELEMENT Item (Text | Resource | Query)>

<!-- text with linked WikiWords -->

<!ELEMENT Text (TextContent | WikiWord)*>

<!ELEMENT TextContent (Lexical)>

<!ELEMENT WikiWord (Lexical)>

<!-- semantic statements and queries -->

<!ELEMENT Resource (Lexical, Property*)>

<!ELEMENT Property (Lexical, Object*)>

<!ELEMENT Object (Lexical)>

<!ELEMENT Query (Lexical)>

Figure 1: Parser Output Format as DTD

content management systems or HTML editors. By restrict-
ing the features to a manageable minimum, this became pos-
sible. Today, we face a situation where hundreds of different
wiki engines exists. All have a different syntax and different
user interfaces. In order to re-use existing wiki engine code
one could either use the component approach form software
engineering and write, e. g. a custom parser for e. g. the wiki
engine MoinMoin. Later the new parser can be deployed on
the server and be used. In effect, even with good software
design, the set up of a new parser is far more complicated
than editing a wiki page. Additionally, the new parser would
work only in MoinMoin.

We propose the modelling of a wiki parser as a REST
web wervice3. In order to make integration easy, the parser
should accept HTTP GET method calls with a parameter
,,wikitext”. The method should return an XML response
according to an agreed structure. For SemWiki we defined
such a structure (see Figure 1) as an XML Document Type
Definition (DTD). It supports no wiki formatting beyond
WikiWords yet, but offers already the option to assert state-
ments and pose queries.

The other side of the user interface, the rendering of wiki
pages, should also be an external application. This leads to a
system architecture, as depicted in Figure 2. Now parser can
be re-used across user interfaces and different user interfaces
can all operate on the same data. Even rich clients on the
desktop can be part of the game.

In order to make this possible, the interface have to be

3See http://www.xfront.com/REST-Web-Services.html

Figure 2: Wiki Web Service Architecture

defined precisely. REST advocates the use of HTTP meth-
ods and leaves open the data format for message exchange.
As XML is the de-facto standard for message exchange and
human readable, we define the messages between the wiki
services as XML messages. We considered using RDF seri-
alised as RDF/XML for message exchange, but this would
not be easy to read by humans and the technology is not as
mature as XML is.

REST preaches a resource-centric thinking, not a method-
call approach like XML-RPC. A ,,get” should not change the
internal state of a resource, a ,,put” should set it, ,,delete”
resets the state and ,,post” produces a new state, taking
into account the old state. HTTP POST thus is the most
powerful method with the least well-defined semantics.

2.1 REST Wiki
Unlike most wiki engines, SemWiki addresses pages not

by page titles but by URIs. By explicitly using globally
unique identifiers, database merge operations become much
easier.

HTTP GET /wiki?uri=page uri
Fetches the XML document for the given page valid
for wikipage-out.dtd

HTTP GET /wiki?uri=page uri&format=rdf
Returns an RDF representation (serialised as RDF/XML)
of the page’s content

HTTP PUT /wiki?uri=page uri&newxml=xml
Expects newxml to contain an XML document accord-
ing to wikipage-in.dtd. Stores content in internal
model.

HTTP POST /wiki?uri=page uri&oldxml=xml&newxml=xml

Calculates the diff from old version to new version
and applies it to the wiki data model. By explicitly
submitting the old content again, the intended change
operation can always be calculate correctly. Whether
the diff causes a conflict or not is another question.

HTTP DELETE /wiki?uri=page uri
Simply deletes this page from the wiki data model.

2.2 REST Parser
The REST Parser has no internal state and supports only

one HTTP method:

HTTP GET /wiki?uri=page uri&wikitext=text
Parses the text given as ,,wikitext” and returns an
XML representation according to wikipage-in.xml.

2.3 User Interface
The user interface is the integration point. When the user

wants to see a wiki page, the UI calls the REST Wiki, ren-
ders the XML as HTML and adds additional navigational
elements. The typical breadcrumb trails would be imple-
mented in the user interface layer. When a user wants to edit
a page, the user interface has to transform the XML docu-
ment to the correct Wiki syntax – a simple XSLT stylesheet
can do this. The user edits the text and the UI sends it
to the parser service. The resulting XML is then PUT or
POST to the REST wiki. A new GET is issued and the
result is rendered for the user.

3. CURRENT IMPLEMENTATION
The current implementation supports the three compo-

nents REST Wiki, parser and user interface. All are running
on different servers, implemented as Java servlets running on
instances of the Jetty web server. At startup time, the user
interface needs to ne called with a GET ?config=config URL
call in order to set the URLs for the REST wiki, the parser
and the used XSLTs. XSLTs are used to render the content
as HTML or text suitable for editing. The total pages are
rendered using Velocity templates. The REST Wiki uses
internally RDFReactor4 in order to manipulate and query
the internal RDF model as Java objects. RDFReactor itself
manipulates a Jena5 model.

4. DEMONSTRATION
In the demonstration we will show the individual web ser-

vices, as they can all be tested with any browser. In order to
overcome the limitations of browsers to support only GET
and POST we added a parameter method=(GET | PUT |
POST | DELETE). We will show how each module can be
debugged easily and independently. Then we will show how
the different web services operate together and form a se-
mantic wiki. In particular we will show how the same con-
tent can be accessed by machines using the primitiv REST
wiki services and the human-oriented web-user interface. We
will also show how semantic statements can be made and
how this ,,background knowledge” can be queried. Query
results are rendered as tables.

5. CONCLUSION AND FUTURE WORK
We have shown how Wikis can be opened up for machine

access by separating the wiki functionality from the user
interface using simple REST-style web services. This will
allow wiki engines to adapt even faster to users needs, as
crucial parts of the wiki ecosystem can now be developed
and deployed independently.

6. ACKNOWLEDGMENTS
This research was partially supported by the European Com-

mission under contract FP6-507482. The expressed content is the
view of the authors but not necessarily the view of the Knowledge
Web Network of Excellence as a whole. The author would like to
thank Werner Thiemann for his help.

4rdfreactor.ontoware.org
5jena.sf.net

