
RDFReactor – From Ontologies to Programmatic Data Access∗

Max Voelkel and York Sure
Institute AIFB, University of Karlsruhe, Germany
{mvo,ysu }@aifb.uni-karlsruhe.de

Abstract

Developers familiar with object oriented program-
ming languages have to make a paradigm shift in
order to produce and manage data usable on the Se-
mantic Web (e. g. RDF). In this paper we describe
the tool RDFReactor which transforms a given on-
tology in RDF Schema into a familiar, dynamic,
object-oriented Java API – at the push of a but-
ton. Developers then are able to interact with java
instances, thus allowing them to stay in their own
world. The generated proxy objects contain no state
and delegate all method calls to RDF model up-
dates and queries. RDFReactor potentially turns
every Java developer into a Semantic Web appli-
cation developer and enables them to use RDF
correctly, efficiently and effectively without even
knowing it. It is downloadable (GNU LGPL) at
http://rdfreactor.ontoware.org .

1 Introduction
A key promise of the Semantic Web is that of global inter-
operability, i. e. applications developed independent of each
other will be able to read and use each others data. Ontolo-
gies are key enablers for the Semantic Web, they describe
the semantics of data to enable ad-hoc interoperability. The
Semantic Web is already rich in ontologies, but poor in ap-
plications that use semantic data. Why? Some evidence can
be found by using Google queries which e. g. show millions
of hits for “Java developer” and only hundred thousands of
hits for queries like “ontology engineer”. This might indicate
a shortage ofontology engineers, who currently can also be
seen asdevelopersfor ontology based applications.

Reuse of existing ontologies is crucial for efficiently and
effectively reaching semantic interoperability on a global
scale. Unfortunately developers familiar with object oriented
programming languages have to make a paradigm shift in or-
der to produce data usable on the Semantic Web (e.g. RDF1).

∗This research was partially supported by the European Commis-
sion under contract FP6-507482. The expressed content is the view
of the authors but not necessarily the view of the Knowledge Web
Network of Excellence as a whole.

1http://www.w3.org/RDF/

Schema Instances

RDF DataRDF Schema

Code
Generator Runtime

R
D

F
Ja

va

Stateless
Java Instances

Java
Classes

Figure 1: Mapping the two worlds

This means, all generated RDF instance data should be de-
scribed by terms of an ontology. The task to make an exist-
ing Java application interoperable with the Semantic Web is a
difficult task, as developers have to learn at the same time the
RDF data model, RDF Schema syntax and semantics and an
API for model manipulation.

The main contribution of our work is to leverage the power
and quantity of Java developers and Java tools for the Seman-
tic Web by significantly reducing this burden. We introduce
RDFReactor, a new open-source tool, which transforms a
given RDF Schema ontology into an object-oriented Java API
with domain-centric methods likepaper.setAuthor(
Author a) instead ofmodel.addTriple(...) . This
enables developers to interact with java proxy objects, thus
allowing them to stay in their own world and at the same time
to make use of the advantages RDF offers.

2 Design

We distinguish two phases in application development:API
generationfollowed by traditionaldevelopment. An overview
of the whole system can be found in Fig. 1.

2.1 Code Generator

First, the developer creates or, preferably, reuses an RDF
Schema as the backbone of her application. TheCodeGen-
erator transforms an RDF Schema into a set of Java classes.

{mvo,ysu}@aifb.uni-karlsruhe.de
http://rdfreactor.ontoware.org
http://www.w3.org/RDF/

BeanType

BeanModel

Bean BeanProperty

isModifiably : bool
isMultiValue : bool

BeanSimpleType

type : String

BeanEntity

comment : String
name: String

1
* beans

1

*supertypes
1 *

properties

1

1 type

Figure 2: The Bean Model

Each generated class directly or indirectly inherits from
ReactorBaseImpl , which has methods likeset(URI
u, Object o) , get , add , remove . Given these
methods it becomes really easy to implement type-safe
methods. A classPerson with a name and a set of friends
(other Person instances) would be generated with methods
like public void addKnows(Person p) {
add(new URI("http://example.com#knows"),
p); . The generated classes are fully under control of the
developer and very easy to understand and customize. If fre-
quent schema changes are expected, customized subclasses
should be used, so that change don’t get lost when the code
generation is triggered again.

Background for mapping RDF into Java. The Java pro-
gramming language models states and activities, but RDF
only models states. Therefore we have to define a suit-
able data-manipulation-centric subset of possible Java-based
APIs. In our work we choose to use the common notion
of a Java Bean Property, that is a typed field in a class,
which can only be accessed through methods, typicallyget
and set . By abstracting this subset of Java, we created
the Java Bean Metamodel (c. f. Fig. 2). Beans map to Java
classes.BeanProperty elements are mapped to a set of
type-safe Java methods, according to theirisModifiable
andisMultiValue attributes. These methods give access
to the set of stored RDF properties either as Java primitive
types, e.g.String getName() , or as Java class types, e.g.
Person[] getAllKnows() .

Mapping RDF Schema to the Bean Model. Overall, we
map RDF instances to Java instances, RDFS classes to Java
classes and RDFS Properties to Java Bean properties. Mul-
tiple inheritance is not possible, hence we try to create
a maximal nested tree from the RDFS inheritance graph.
Cycles in thesubClassOf -graph are checked. RDF-
resources can have multiple types, however, in Java a class
can only have one type. The other types are available through
getAllTypes() .

The Full Mapping. Multiple Java artefacts (class, bean
properties) can be mapped to the same RDF artefact (class,
property). Calling different methods with the same mapping
then simple has the same effect. The mapping is stored in the
different static URIs within each generated class file.

2.2 Runtime
At runtime, implementations are instantiated with a number
of required parameters: An RDF model and an instance URI.
For RDF models, the abstraction layer RDF2Go2 is used. All
method invocations on Java instances are channelled through
the “Bridge” which analyzes method names and types, looks
up the URIs of classes and properties in the mapping and
translates the method call into RDF operations. Changes in
the RDF data model are thus reflected back instantly in the
Java instances without any effort of the developer. Concur-
rent usage of the same data is also no problem. Internally,
RDFReactor uses Jena3 for RDF Schema reasoning.

3 Related Work & Conclusion
Current approaches likeOntoJava [1], Rdf2Java 4, and
OWL2Java[2] generate source code for Java classes and hold
state at runtime in Java instances. They give the user ways
to load RDF into this object model and write it back as well.
State is thus maintained in Java instances and not in the RDF
model. This leads to divergences between the two models and
consistency problems. Also some usability features such as a
customisation option is currently missing from all tools.

In this paper we have shown how a domain-centric, usable
Java API can be generated from an arbitrary RDF Schema.
Our implementation, RDFReactor, is due to it’s dynamic na-
ture always in-sync with the RDF data model. This inher-
ently allows for concurrent access to the RDF data model.
Each class inherits fromReactorBase , which allows the
developer to manipulate arbitrary RDF properties directly
(set(URI prop, Object o) . Thus we do not restrict
the expressivity of RDF in any way. Additionally, code gen-
erated by RDFReactor is fully customisable, thus method
names and URIs can be changed easily.

We help to make the ontology reuse promise a reality by
enabling the average Java developer to consume and pro-
duce data conforming to existing ontologies through domain-
specific Java APIs. The main advantage of our approach is
that developers who use the generated API don’t have to know
RDF at all, but can make full advantage of its’ capabilities.
RDFReactor is downloadable (Open Source GNU LGPL) at
http://rdfreactor.ontoware.org .

References
[1] A. Eberhart. Automatic generation of java/sql based in-

ference engines from rdf schema and ruleml. InProc. of
ISWC2002, volume 2342 ofLNCS, 01 2002.

[2] A. Kalyanpur et al. Automatic mapping of OWL ontolo-
gies into Java. InProc. of SEKE2004, 2004.

2http://rdf2go.ontoware.org
3http://jena.sourceforge.net/
4http://rdf2Java.opendfki.de

http://rdfreactor.ontoware.org
http://rdf2go.ontoware.org
http://jena.sourceforge.net/
http://rdf2Java.opendfki.de

DEMO: RDFReactor – From Ontologies to
Programmatic Data Access

Max Voelkel and York Sure
Institute AIFB, University of Karlsruhe, Germany
Contact:{mvo,ysu }@aifb.uni-karlsruhe.de
Download:http://rdfreactor.ontoware.org

In the demo we will first show how the FOAF5 RDF Schema
is transformed into interfaces on the fly. We then customise
the interfaces to our needs. Then we write a little example
program against the generated API. After execution of the
program we show the generated RDF data.

Additionally, we opt to transform any RDF schema sug-
gested by the audience ad-hoc into an API. Writing a minimal
example program also takes only 2 minutes.

For reference we add an example program in the following.

public static void main(String[] args) {

// set up
Model model = new ModelImplJena22(false);

// use generated FOAF API
Person max = new Person(model, new URI("http://example.com\#person1));
max.setFirstName("Max");
max.setFamily_name("Voelkel");
max.setMBoxHashed("25ab1214....67700");
max.setNick("xamde");
max.setHomepage("http://www.xam.de");
max.setPhone("tel:+49-171-8359678");

Person denny = new Person(model, new URI("http://example.com\#person2));
denny.setName("Denny Vrandecic");
denny.setMBoxHashed("4789fb144...fea3d12");
denny

.setSeeAlso("http://www.aifb.uni-karlsruhe.de/
Personen/viewPersonenglish?id_db=2097");

max.addKnows(denny);

}

5http://www.foaf-project.org/

{mvo,ysu}@aifb.uni-karlsruhe.de
http://rdfreactor.ontoware.org
http://www.foaf-project.org/

	Introduction
	Design
	Code Generator
	Runtime

	Related Work & Conclusion
	Demo

