
Writing the Semantic Web with Java ∗

http://semweb4j.ontoware.org

Max Völkel
Institute AIFB

Karlsruhe, Germany

max.voelkel@aifb.uni-karlsruhe.de

ABSTRACT
To build semantic web applications, developers must master
three things at the same time: Their programming language,
the semantic web languages (RDF, RDFS and OWL), and
the web protocols (HTTP). This paper presents a frame-
work, semweb4j that turns Java developers into semantic
web developers without requiring them to learn RDF, RDFS,
HTTP or Servlets. We present a triple store abstraction
layer (RDF2Go), an ”RDFS as Java” tool (RDFReactor),
and a tool for RESTful web service creation without expos-
ing Servlets (jREST). Finally we briefly show in two exam-
ples how these frameworks can be used together (branded
as semweb4j) in real-world applications.

1. INTRODUCTION
The Semantic Web vision combines two core elements:

computer-tractable semantics [3] and the world wide web [1].
These two elements, semantics and web, both contain ideas
for interoperability that go beyond traditional programming.
With computer-tractable semantics, sophisticated and ex-
pressive data models can be re-used across programming
languages. The internet allows two machines to exchange
data across locations at very low costs. Taken together,
the semantic web enables computers to exchange data and
their semantics without being bound to any programming
language or geographical location.

For a developer, the realisation of this vision involves a lot
of programming effort. Each programming language offers a
different type system, some offer static type checking, some
languages defer the check until runtime.

The semantic web has a common data model (RDF) and
a way to express the semantics of it unambiguously (RDFS
and OWL). Semantic web applications produce and consume
semantic content—data structures annotated with their se-
mantics.

In order to write semantic web applications, two gaps must
be closed: From the specific type-system of a programming
language to the generic semantic web representation lan-
guages (RDF, RDFS, OWL) and from method calls to the
network protocol of the semantic web (HTTP).

For this paper, we analyse and show how Java can be used
to write the semantic web. Especially, we try to bridge the

∗This research was partially supported by the European
Commission under contract FP6-507482 (KnowledgeWeb).
The expressed content is solely the view of the authors.

Copyright is held by the author.
CDH Seminar’05 Galway, Ireland

Jena 2.2YARS Sesame 1.2
& 2.0

RDF2Go

NG4J

Semweb4j-arch

Application

RDFReactor

Application Data Objects

jREST

web

Jetty

Figure 1: Building Applications with semweb4j

gap with frameworks that do not require much knowledge
about semantic web concepts and technologies. To sum-
marise, we try to turn ordinary Java developers into seman-
tic web developers – without telling them.

In the remainder of this paper we will first talk about
the semantic representation gap in Sec. 2 and then about
the web protocol gap in Sec. 3. In Sec. 4 we will present
some real-world applications realised with semweb4jḞinally,
in Sec. 5, we will summarise the main points.

2. THE SEMANTIC IN SEMANTIC WEB
Today’s data is mostly stored in relational data bases,

documents and semi-structured data.
The Resource Description Framework1 (RDF) is a graph-

oriented data model, designed to store all kinds of data mod-
els. RDF Schema2 types nodes in the graph and annotates
them with the intended semantics. RDF stores data, data
structures and annotations of both in the same fashion. To
bridge the gap to the object-oriented Java world, we take
two steps: First, we create an implementation independent
triple store API (RDF2Go). Second, on top of that, we map
RDFS semantics to Java semantics (RDFReactor).

2.1 RDF2Go
RDF2Go3 is a lightweight adapter framework and abstrac-

tion for existing RDF triple and quad stores and Java Ap-
plications. While there are many implementations of the

1http://www.w3.org/RDF/
2http://www.w3.org/TR/rdf-schema/
3http://rdf2go.ontoware.org

http://semweb4j.ontoware.org
http://knowledgeweb.semanticweb.org/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://rdf2go.ontoware.org

Resource Description Framework in Java, each of them has
it’s pros and cons and it’s difficult to choose the right one
for your purposes among them. Using RDF2Go it’s easy to
change the underlying RDF store without major effects for
your application: Java applications may use the RDF2Go
API to remove compile-time and run-time dependencies on
any particular RDF implementation.

The RDF2Go approach can be compared with the ap-
proach of the Jakarta Commons Logging4 framework, which
abstracts logging framework implementations away.

RDF2Go offers methods for adding and removing state-
ments, querying by simple triple patterns (with wildcards),
and a generic SPARQL query option, which forwards the
query to the underlying implementation. Query results are
returned as type-safe Iterators over Statement objects.
RDF2Go does not offer additional parsing, persistence, or
inference, as the triple stores already offer this.

The overall architecture of semweb4j is depicted in Fig.
1, which shows that RDF2Go gives the developer a unified
view on RDF stores. As more and more triple stores offer
support for Named Graphs or Contexts or Quads, RDF2Go
provides all techniques available for triple models also for
context models. An adapter allows to treat any context
model as a triple model (named with a URI).

The current version 0.2 offers support for the triple stores
Jena 5 2.2 and Sesame 6 1.2.2 and 2.0, and the quad stores
YARS 7 ref. 1217 and NG4J 8 V0.4 (which builds on Jena).

Internally, RDF2Go has two major parts: Common, Java-
centric interfaces and a set of adapters that implement them.

Creating adapters for new triple stores is not difficult:
only a handful of methods have to be implemented. E. g.
writing the adapter for Sesame took less than two hours.
Appropriate abstract classes provide the basis for new im-
plementations.

Summary.RDF2Go enables developers to program against
a triple-centric API, without having to decide for a specific
implementation for most RDF model operations. It is easy
to extend RDF2Go for other triple stores, and all techniques
apply equally to context (quad) models as well. RDF2Go
has no internal state, it just acts as a facade over other
(stateful) triple stores. Further information about RDF2Go
can be found in [4].

2.2 RDFReactor
RDF2Go is helpful, but still requires full knowledge about

the RDF data model. We expect many real life applications
to be ontology-driven, not triple-driven. Thus we don’t see
a need for a Java developer to learn the RDF data model.

RDFReactor makes using RDF simpler for Java develop-
ers by enabling RDF access via object-oriented proxy ob-
jects. Java classes (with Javadocs!) are generated automat-
ically from an RDF Schema. The usage cycle is depicted in
Fig. 2. Basically, RDFS classes are mapped to Java classes
and RDFS properties are mapped to method calls. For each
property p with domain A and range B, the following set of
methods is generated:

4http://jakarta.apache.org/commons/logging/
5http://jena.sourceforge.net
6http://www.openrdf.org/
7http://sw.deri.org/wiki/YARS, without using HTTP
8http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/

Java

Classes

RDF Schema

Stateless

Java Instances

RDF Data

Schema Instances

Code

Generator

Code

Generator
RuntimeRuntime

Java

RDF

Figure 2: RDFReactorUsage Cycle.

• public B getP() – returns either null, a single value
or throws an RDFDataException if the property has
multiple values.

• public void setP(B value) – removes all existing
values and sets given value

• public void removep(B value) – removes the given
value (if present)

By using a slight RDFS extension, schema authors can re-
strict the maximal cardinality. If the maximal cardinality is
greater than one, two more methods are generated:

• public void addp(B value) – adds the value

• public B[] getAllp() – returns all values

All method calls result in immediate manipulation or query
of the used RDF2Go model. All data written to the model is
ensured to be described according to the RDF Schema, e. g.
on creating an instance, RDFReactor writes the appropriate
rdf:type-statement to the model.

RDFS inheritance is mapped to Java inheritance to the
possible extend. RDFReactorcalculates the longest path
from an RDFS class to rdf:Resource and realises this path
via inheritance. Where inheritance is not possible, property
access code is duplicated.

Directly ore indirectly, all classes inherit from common
base class. All instances of this class have a URI S and offer
methods manipulating triples of the form (S,*,*). The
generated method implementations consists of a single line
of code which calls the generic functionality from the base
class. This design makes the code very ”hackable”.

Input files can be in RDF/XML, N3 or NT syntax. The
mapping from RDF Schema to Java is fully customizable
with a Velocity9 template.

Summary.RDFReactor allows the developer to think in
objects, not in statements. He can access (read and write)
RDF by using familiar Java Bean idioms, e. g. use
person.setName("Max Mustermann") instead of addTriple(
personURI, nameURI, "Max Mustermann"). RDFReactor
is completely stateless, all method calls are ultimately for-
warded to an RDF2Go model. This allows e. g. simulta-
neous access through multiple APIs. Further information
about RDFReactor can be found in [5].

9http://jakarta.apache.org/velocity/

http://jakarta.apache.org/commons/logging/
http://jena.sourceforge.net
http://www.openrdf.org/
http://sw.deri.org/wiki/YARS
http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/
http://jakarta.apache.org/velocity/

3. THE WEB IN SEMANTIC WEB
In order to communicate with remote machines on the

web, some protocol is needed. The WWW uses the applica-
tion protocol HTTP to transfer resource representations. In
Java, the most common API for HTTP is the Servlet API.
There is still a gap from generic HTTP methods, which ad-
dress resources via URL, and standard Java classes and in-
stances with specific methods. The framework jREST 10

bridges this gap and exposes (annotated) standard bean-
style objects as RESTful [2] web services.

jREST comes with a generic server, which allows to reg-
ister arbitrary objects under a given URL-path. Incoming
HTTP method calls are forwarded to bean-style methods
of the appropriate registered object instance. The methods
GET, PUT, POST and DELETE and forwarded to Java
methods with the same name. Multiple methods with the
same name can be used to model optional parameters. We
use the Java 1.5 annotations11 to annotate Java parame-
ters with a key (@RestAddress) by which they should be
exposed to the web. Note that Java’s introspection cannot
determine the parameter names in a method. Default val-
ues of parameters can also be stated using the annotation
@DefaultValue.

Handling of the HTTP request body is achieved with a
third annotation (@RestContent). We assume the content is
a valid XHTML file containing a single description list (dl)
in the body. jREST support serialising to and de-serialising
of common data structures to an XHTML subset. We map
instances from the Java Collection Framework in the fol-
lowing way: A Set is mapped to XHTML’s ul (unordered
list), List becomes ol (ordered list), and Map is mapped to
a dl (description list). Nested data structures are mapped
to nested document structures. Re-using XHTML enables a
very simple an convenient debugging—any standard browser
can render it.

Incoming request are matched against the available meth-
ods of the registered object, using jRESTs auto-conversion
from String values to the desired data types. If all parameter
values can be filled from the web request or given default val-
ues, the method is executed and the result is auto-converted
into XML, using the same XHTML-subset to encode data
structures as above.

Summary.jREST relieves developers from learning HTTP
or Servlets. They can simply register any object with anno-
tated methods with the jREST server and it will be exposed
at runtime as a RESTful web service.

4. EXAMPLES

4.1 SemVersion
SemVersion12 is a semantic data versioning system [4]. It

uses an RDF2Go quad model to store named triple sets. One
of these RDF models contains all metadata about the rela-
tionship between the other versioned RDF models (author,
time stamp, predecessor, . . .). This information is accessed
via generated RDFReactor proxy classes. In the near future,
SemVersion will get a web API, which will use jREST.

10http://jrest.ontoware.org
11http://java.sun.com/j2se/1.5.0/docs/guide/
language/annotations.html

12http://semversion.ontoware.org

4.2 SemWiki
A semantic wiki is a wiki with additional support for au-

thoring, browsing and querying semantic data. The im-
plementation SemWiki13 uses RDFReactor for its internal
data management. A wiki page in this wiki consists of an
rdfs:List which contains wiki text, resources or queries.
As wiki pages are resources themselves, nested pages are
possible—a page may even contain itself. The parser, a sta-
tic file server and the wiki page controller are realised as
RESTful services via jREST.

4.3 Cleaner
To evaluate jREST, a sample application to clean web

pages was built. It fetches a given URL, applies HTML to
XML cleaning to it and transforms the result with a style
sheet specified by a second URL in the web request. This al-
lows for the easy construction of wrappers (also called screen
scrapers) for web pages. The server for XSLT files and the
cleaner itself were exposed as web services via jREST with
a minimal overhead compared to non-web application de-
velopment: Both services offer a get-method in which the
parameters are annotated. With three more lines of code, a
web server is started and the two objects are registered as
web services.

5. CONCLUSIONS
In this paper we presented semweb4j, a semantic web ap-

plication development framework that requires almost no
knowledge about neither semantic nor web to create fully
functional, interoperable semantic web applications.

RDF2Go provides a triple store abstraction, RDFReac-
tor generates a domain-centric object-oriented API from an
RDF Schema, and jRESTexposes annotated objects as web
services. Taken together, these frameworks help creating
robust semantic web applications easier and have been used
already in real-world applications (SemVersion, SemWiki).
For the future, we look into ways to streamline the develop-
ment and deployment process even further.

6. REFERENCES
[1] T. Berners-Lee. Weaving the Web. Texere Publishing

Ltd., November 1999.

[2] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[3] M. Hammer and D. McLeod. The semantic data model:
a modelling mechanism for data base applications. In
SIGMOD ’78: Proceedings of the 1978 ACM SIGMOD
international conference on management of data, pages
26–36, New York, NY, USA, 1978. ACM Press.

[4] M. Völkel, C. F. Enguix, S. R. Kruk, A. V. Zhdanova,
R. Stevens, and Y. Sure. SemVersion - versioning RDF
and ontologies. KnowledgeWeb Deliverable D2.3.3.v1,
Institute AIFB, University of Karlsruhe, June 2005.

[5] M. Völkel and Y. Sure. RDFReactor - from ontologies
to programmatic data access. In Proceedings of the
International Semantic Web Conference - Demo
Session, Galway, Ireland, NOV 2005.

13http://semwiki.ontoware.org

http://jrest.ontoware.org
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://semversion.ontoware.org
http://semwiki.ontoware.org

	Introduction
	The Semantic in Semantic Web
	RDF2Go
	RDFReactor

	The Web in Semantic Web
	Examples
	SemVersion
	SemWiki
	Cleaner

	Conclusions
	REFERENCES -9pt

