
TagFS — Tag Semantics for Hierarchical File Systems

Stephan Bloehdorn
Institute AIFB, University of Karlsruhe

D-76128 Karlsruhe, Germany

sbl@aifb.uni-karlsruhe.de

Max Völkel
Institute AIFB, University of Karlsruhe

D-76128 Karlsruhe, Germany

mvo@aifb.uni-karlsruhe.de

ABSTRACT
Today, most computer users work with traditional hierar-
chical file systems for organizing large amounts of personal
files. Recently, tagging has grown popular as an alterna-
tive means of organizing information resources, especially in
collaborative contexts.

This paper analyzes the different semantics between strictly
hierarchical and tagging-based organisation. Based on these
observations, we map non-hierarchical tagging and query se-
mantics to the commonly used hierarchical file system se-
mantics, thus combining the benefits of both worlds. Our
WebDAV-based implementation allows users to collabora-
tively manage their files in a tag-based manner via existing,
familiar file system explorers.

1. INTRODUCTION
The amount of digital information stored on single com-

puters is increasing steadily [1]. Most users are familiar with
the hierarchical file system of their operating system which
they efficiently browse for organizing the large amount of
available files. The major building block of a hierarchical
file systems is the directory as an organizational unit which
acts as a container for files or further (sub-)directories. A
structure of nested directories is commonly used for a so-
phisticated organization of files according to the semantics
of their content from most general at the top level to most
specific at the leaf levels of the directory hierarchy.

Example 1 (Music Files). A typical organization
pattern for music files is to maintain different directories
for each artist at the root level, further subdirectories for
the different albums in which the actual files are situated
using the track title as the file name.

Example 2 (Scientific Papers). A typical organiza-
tion pattern for storing digital versions of scientific papers of
interest would be to maintain different directories for differ-
ent research areas possibly including refinements for different
scientific subfields.

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

Unfortunately, traditional hierarchical file systems don’t
serve their purpose well. Barreau and Nardi [2] observed in a
study, that “Every user [...] indicated that their attempts to
establish elaborate filing schemas for archived information
failed because they proved to require more time and effort
than the information was worth.” We found a number of
reasons for the inability to help people organise information
resources with file systems:

Single Location A file can reside at only one location in
a strict directory hierarchy at the same time without
being duplicated1. In Example 2, a scientific article—
unless being duplicated—can only reside within one of
the two directories ir or semweb although both con-
tainers might be semantically adequate if the paper
is dealing with both topics, information retrieval and
semantic web, at the same time.

In fact, the single location property entails a number of de-
ficiencies which can be specified in more detail:

Browsing to Maximum Specificity Retrieval of a file
by browsing requires navigation to the exact directory
where it is stored. An implicit classification of the file
object into higher-level directories along the path is
not done. In Example 1 this would for example re-
quire a user in the search of Lisa Ekdahl’s “Stranger
On Earth” to navigate the full path down to the album
“Back To Eearth”, while a search in the “Lisa Ekdahl”
top-level directory will yield no results.

Missing Orthogonality Files are classified by different di-
mensions. E. g. digital pictures can be organized by
time, by topic, by location, or by persons which appear
in the picture. All these orthogonal dimensions have
to be squeezed into a single hierarchy, that allows only
one access path.

Path Order Dependance While the directories along a
path are often perceived as independent attributes, the
semantics of the hierarchical file system contrasts this
by a highly order-dependant interpretation. In Exam-
ple 2, a directory structure containing the two paths
ir/semweb and semweb/ir may grow naturally over
time, which point, however, to entirely different sets
of files.

1Although some file systems allow a file to reside at mul-
tiple locations simultaneously (via hard links), most of the
problems described below remain or require a lot of manual
effort compared to tagging.



Independent of the single location issue and its implications,
traditional file systems exhibit two further deficiencies:

No Query Refinement The file system offers no dynamic
refinement strategy in browsing for files: each direc-
tory contains only directories that have been explicitly
put there. No other potentially relevant directories to
search in are listed.

No Navigational Aid All directories within a directory
look the same, with no indication of the content of
sub-folders, e. g. regardless whether they are almost
empty or contain large sub-hierarchies.

Recently, tagging has become an alternative approach for
semantically organizing information resources, which has
grown in popularity especially in the context of collaborative
tagging systems as for example del.icio.us2 for bookmarks or
flickr3 for digital images.

In such tagging systems users are annotating information
resources with freely chosen keywords. All items tagged with
the same keyword implicitly form a set. A set of arbitrary
tags is often treated as a conjunctive query, denoting the in-
tersection of the tag-induced sets. Consequently, tags or tag
combinations, and the sets they imply, become the major
organizational unit of tag-based information management.
Information organization based on tags does not suffer from
the problems identified for information organization in hier-
archical file systems.

The main contribution of this paper is a clean mapping of
non-hierarchical tagging and tag-query operations to exist-
ing hierarchical file system operations. We present TagFS,
a file system with tag semantics, as a means for managing,
browsing and retrieving large amounts of files efficiently. On
the first sight, the resulting system behaves like a traditional
file system but the retrieval and change operations like copy

or move carry tagging based semantics.

Outline
This paper is structured as follows: In section 2 we contrast
the two approaches for organization of information resources
in more detail and present a mapping of tag-based systems
to the traditional file system paradigm by assigning new se-
mantics to the traditional file system operations. In section
3 we outline the design and implementation of a prototype
which implements the tagging semantics behind a WebDAV-
compatible abstraction layer. In section 4 we point to related
work on semantic file systems and we conclude in section 5.

2. DESIGN
In this section, we briefly review the structural properties

of hierarchical file systems and tagging based systems, then
explain how we redefine folder operations to tag operations
and browsing to conjunctive queries.

2.1 Classical File Systems and Tagging

Hierarchical File System.An organizational unit of infor-
mation content stored within the file system as a sequence
of bits makes up what we regard as a file.

2http://del.icio.us
3http://www.flickr.com

Typically, an index structure (the file allocation table)
provides a mapping from a set of access paths to the corre-
sponding blocks of information. As such, the access paths
act as keys for accessing the file content. The perceived or-
ganization of files into directories is a result of the structure
of the access paths.

Files are accessed via an access path. Each access path can
be decomposed into a sequence of directories (which we will
call the location) and a file name at the end. E. g. we decom-
pose the access path at /paper/2003/semweb/gruber03.pdf
into location = paper, 2003, semweb and file = gru-

ber03.pdf.

Tagging Systems.The actual storage of an information
item in a tagging system is typically opaque to the user.
The file content is accessed by means of a resource key4.
On the tagging layer, tag annotations are freely attached to
resources. Formally, tag annotations can be seen as unary
predicates applied to the resources. As such, tag annotations
imply different sets of resources which can be combined us-
ing the standard set operations of union, intersection and
complement. In the following, we will restrict our focus on
conjunctions of tags, i.e. intersections of the corresponding
sets, which we will call query or—in analogy to the hierar-
chical file system—location. Note that in this paradigm, one
and the same resource may reside within different locations
at the same time.

2.2 Mapping Tagging Semantics to Hierarchi-
cal File Systems

The following section describes the mapping between the
tag-based and the hierarchical file system approach on the
basis of three use cases: retrieval, re-organisation, and
adding files to TagFS.

In brief, tags are assigned or changed by moving, copying
and deleting files. New files are added by copying or mov-
ing from an external store to TagFS. File deletion and tag
creation require special workarounds, as described below.

Retrieval: Mapping Locations To Queries.In our map-
ping, directories are interpreted as tags and locations (se-
quences of directories) are interpreted as conjunctions of
tags. We define the two functions view(location) and sub-
folders(location) for browsing and retrieval. In a file system,
the view of a directory is the union of both functions.

view(location) returns all files, or – strictly speaking
– resources, that have been tagged with all tags
contained in the location. Thus we treat folders
as tags and files in a location represent the query
results. E. g., in Example 1 a view of the folder
/lisa-ekdahl/swedish-song/2005 shows all music
files that carry the tags lisa-ekdahl, swedish-song

and 2005 (and possibly other additional tags as well!)
with the obvious interpretation of these tags. Note
that the folder view for a different permutation of
these tags as in /2005/swedish-song/lisa-ekdahl

would return the very same set of resources as it
corresponds to the equivalent conjunctive query.

4The resource key may in fact be (and often is) a simple
access path on a lower “storage” layer.



Figure 1: Refining a query by browsing

subfolders(location) returns all those tags as

subdirectories, which can be used as a refinement of
the current conjunctive query without returning an
empty query result. In Example 1 (c. f. Fig. 1)
imagine that the user had tagged Lisa Ekdahl’s song
“Now Or Never”using the tags lisa-ekdahl, swedish-
song and 2005 and favorite. The song resource
would have been displayed in the previous example
on the location /lisa-ekdahl/swedish-song/2005.
The subfolders(/lisa-ekdahl/swedish-song/2005)

would (probably amongst others) return the tag / sub-
folder favorite as an indication of a possible refine-
ment. Similarly subfolders(/2005/favorite) would
return lisa-ekdahl and swedish-song as subfolders.
Each directory is named like the tag name plus the
number of query results, like ’2005 (847)’ and ’favorite
(8)’.

Organization: Mapping File System Operations to Tag
Changes.We use the following mapping from file system
to tagging semantics, roughly mapping files to resources and
tags to folders.

delete(location,file) removes the last tag from the spec-
ified file. This operation is consistent with the tradi-
tional file system in that the file will no longer occur
in the specified folder.

In order to really delete a file, it has to be tagged with
delete. This results in the immediate removal of the
specified file from the storage backend and removal of
all tagging references to this file.

copy(location source,location target,file) assigns ad-
ditional tags from the target folder to the file in ques-
tion. Note that this will in general result in additional
results for the subfolders(...) operation on the source
folder.

move(location source,location target,file) consistent
with the delete(...) and copy(...) operations, this
operation removes all the tags denoted by the source
location and assigns all the tags denoted by the target
location to the file in question. This behavior is again
consistent with the behavior of traditional file systems
in that the file disappears from the old location and
appears in the new location.

createDirectory (tag) Creating a new directory is only
necessary if no file carries the corresponding combina-
tion of tags so far. However the newly created direc-
tory would not be shown at the location it was created,
because only tags with non-empty query results are
listed. We tackled this problem by means of the fol-
lowing heuristic: TagFS uses a special placeholder file
just_created, tagged with all the tags implied by the
current location plus the newly introduced tag. The
placeholder file will remain tagged until an actual file
receives the relevant tags, the user session has ended
or a timeout has occurred. If the corresponding tag
does not yet exist, it is created.

move, copy or delete a directory These commands are
executed for each file at source location.

Adding Files: Mapping Files to Resources.Resources,
by definition, unambiguously identify file contents. The file
name as the last part of the traditional access path can,
taken by itself, be ambiguous in the context of a tag based
file system, because the root folder lists all files in one direc-
tory.

We thus require unique filenames. For presentation, we
change the filename at insertion time by adding a disam-
biguation number into the file name just before the file type
extension. In our previous example this would result in
gruber.pdf and gruber-1.pdf. For each file, we store the
unique MD5 hash over the file content as resource keys. This
approach results in the following operation for the new file
system:

put(external-acces-path,location) this operation re-
sults in the following actions: (i) insertion of the ex-
ternal file content into the storage backend, uniquely
mapped to a resource key equivalent to the MD5
hash; (ii) assignment of all tags denoted by the lo-
cation to the resource key; (iii) assignment of the
file name composed of the original filename, a disam-
biguation number and its file type extension to the
resource. E. g. in Example 2 moving a paper with file-
name gruber93toward.pdf from outside TagFS into
the folder /1993/ontology would assign the tags 1993
and ontology to the newly created resource gru-

ber93toward.pdf .

This approach brings in certain peculiarities as for example
that a second file with the same content hash as a previ-
ously stored file is considered to be the same file, regardless
of original file name. This enables files which are copied from
the semantic file system to another store (e. g. email attach-
ment) to be identified as the same file, when re-inserted it
into the semantic file system.

3. IMPLEMENTING TAG SEMANTICS
FOR HIERARCHICAL FILE SYSTEMS

TagFS is implemented in Java as a virtual file system, ex-
posed via WebDAV. The overall architecture is depicted in
Fig. 2. On the highest level, we have different users, inter-
acting with their existing file explorers over the WebDAV
protocol, from which we use the specifications [3] and [4].
For implementing a WebDAV server we use two open source



HTTP Virtual
Directory

User

Content Storage (file system) Metadata Store (RDF)

Storage Backend Layer

WebDAV Server Layer

Program Logic Layer

Jakarta Tomcat + Jakarta Slide

TagFS

WebDAV Client

User

HTTP Virtual
Directory

HTTP (WebDAV) Protocol

Figure 2: TagFS System Architecture

tools from Apache Jakarta, namely Tomcat and Slide. In the
very heart of the system, we implement our business logic
(the mapping). Further down, we use two different storage
back-ends: A classical file system, storing the binary file con-
tents and an RDF triple-store (a specialized RDF database),
storing the tag assignments in RDF format.

In the next section we explain why we chose WebDAV,
how we manage the tag assignments and how we store files.
The mapping itself has been described in Sec. 2.

Integration of a Virtual FS.In order to allow users to
seamlessly interact with TagFS using their standard file ex-
plorers like the Microsoft Windows Explorer, a commomny
supported protcol needs to be used.

The windows network file system protocol SMB/CIFS of-
ten does not work across local network boundaries because
of firewalls. Furthermore there is no Java implementation
for it.

FTP does not support secure transmission and authentifi-
cation and secure FTP (SFTP) is badly integrated in MS-
Windows and Mac standard filesystem tools. Even worse: A
simple operation such as a remote move command is mod-
elled as download–move–upload, resulting in a waste of time
and bandwidth.

WebDAV solves these problems. It is an HTTP-based pro-
tocol for remote file system operations. Remote WebDAV-
folders can be mounted as Windows network folders (built-in
support) and can also be mounted in Linux and Mac OS file
systems.

We decided to use a WebDAV sever as the interface to the
client (Windows Explorer, Unix file system mount). The
backend for the actual file storage is explained in the next
section.

Managing Tag Assignments.We manage tags using RDF,
the Resource Description Framework. Each tag assignment
is stored as a set of three RDF triples: It has a file, a tag and
a user. This enables collaborative tagging. We also store the
original file information such as file size and creation date
in the RDF store. As direct manipulation of RDF data is
rather cumbersome, we use RDFReactor [5] to map our RDF

TagUser

TagAssignment

File

labelname
hash
size
created

login
pass

Figure 3: Tag Assignment Schema

Schema5 to Java classes.

Storage Backend.As the internal file storage is never ex-
posed to the user, we have many design options. For simplic-
ity and backup reasons we choose to store files in a classic
file system directory. As current file systems do not perform
well with very large folders, we use a two-level index strat-
egy, e. g. storing a file abcde.txt as folder a/ab/abcde.txt.

4. RELATED WORK
A study on personal file management [2] states a strong

preference of users to guess file locations and browse for a
file in a list rather than using keyword search tools. Often
they find their files in the first or a few tries. To achieve
this, users consciously organize their files for easy retrieval,
using directories to relate files with a work context.

There are some works which try augment file systems with
additional semantics. Back in 1991, Gifford et. al. [6] list
about ten implementations of virtual file systems in UNIX.
A virtual file system is described as a set of virtual folders
which appear within existing tree structured file systems. A
virtual directory abstracts storage locations away and lists
files based on a query which determines the content dynam-
ically.

Gifford’s system extracts attributes, modeled as key-value
pairs, from file via a set of transducers, one for each file type.
He maps virtual directory names to queries, using one path
entry for the key and the following for the value. E. g. /lo-
cation/London/author/Max would list all images showing
London, shot by Max. Gifford distinguishes between nor-
mal and hidden virtual directories, to remain compatible
with existing network file system protocols and file archiv-
ing tools such as zip and tar.

The work of Soules and Ganger [7] is quite similar, but
emphasizes the aspect of getting usable metadata. They ob-
serve, that users do not like to state additional information
when saving a file to a directory, but are willing to choose a
directory and name for the file. Both directory and filename
can be seen as a context of the file, which can be stored as
metadata.

The more recent work of Mills [8] describes an imple-
mentation which combines the ideas of [6, 7] and extracts
EXIF and ID3 metadata from digital pictures and music
files. When a user puts a file into location/London the ap-
propriate EXIF information is also written back into the file.
New attributes and possible values are created by creating
new directories. Mills builds upon [9], which runs only on

5http://semfs.ontoware.org/2005/tagfs



UNIX systems.
An extension [10] to the popular browser Firefox allows

users to browse their del.icio.us tags as a virtual hierarchy.
However, the support is read-only and only two levels of tags
are rendered as nested folders.

Our Contribution. TagFS steps away from attribute-
value-pairs and offers only unary tags. This makes the tran-
sition from classical file systems to TagFS easier. In key-
value-based systems, the folders denoting keys are not al-
lowed to contain files, resulting in hard to understand error
messages for users. TagFS is platform independent and—
thanks to WebDAV—works across firewalls. Thus TagFS is
more suitable for collaboration. Finally, TagFS makes tag
authoring much easier.

Soules and Ganger [7] stress the need to keep relations
between files. TagFS makes this easy: users simply add an-
other tag to form a new group. This does not affect previous
ways to find the files.

TagFS makes the explicit, manual management of tags
so simple, that users don’t have to rely on automatically—
and possibly error-prone—extracted meta-data. They are
also not forced to use a fixed structure of keys. Instead,
TagFS users can choose their keywords freely and evolve
their organisation scheme as needed.

5. CONCLUSION AND OUTLOOK
In this paper we presented TagFS, a virtual file system

with tagging semantics. TagFS allows users to manage their
files collaboratively through their existing desktop applica-
tions for file management, provided WebDAV support. We
explained how we overload file system operations with tag-
ging semantics. Then we sketched our current system archi-
tecture and discussed related work.

Until now, no user study on virtual file systems is known
to the authors. We expect TagFS to be as easy to use as cur-
rent tagging systems on the web. Simple tasks like “give all
papers on machine learning and semantic web to Stephan”
boil down to either copy the directory ml/semweb or grant
Stephan access to a shared TagFS server. Compared to ex-
isting tagging systems TagFS has its strength on tag assign-
ment and management, in particular mass-tagging via drag
and drop is offered.

Outlook. We identified a number of directions for future
work, which we list briefly:

• Export all meta data as RDF, enabling others to come
up with even better ways to re-use, visualise, search
and browse the emerging structure

• Management of del.icio.us and flickr tags within TagFS

• Systems tags like _older-than-2-weeks or _bigger-

than-1MB could be generated automatically.

• Extracting metadata (EXIF, ID3) from files automat-
ically could also enhance usability.

• User Management: WebDAV can require the user to
login before performing any operation. This enables
per-user tracking of all operations and enables more
sophisticated collaborative tagging.

Acknowledgments: This research was partially supported

by the European Commission under contracts IST-2003-507482

Knowledge Web (http://knowledgeweb.semanticweb.org), IST-

2006-027705 NEPOMUK and IST-2003-506826 SEKT (http:

//www.sekt-project.org/). The expressed content is the view of

the authors but not necessarily the view of the project consortia.

We would like to thank our colleagues for fruitful discussions, An-

dreas Kreidler for assistance in implementation work, and Heiko

Haller for help in editing this paper.

6. REFERENCES
[1] Lyman, P., Varian, H.R.: How much information

(2003) http:
//www.sims.berkeley.edu/how-much-info-2003,
retrieved on 02.11.2005.

[2] Barreau, D., Nardi, B.A.: Finding and reminding: file
organization from the desktop. SIGCHI Bull. 27
(1995) 39–43

[3] Goland, Y., Whitehead, E., Faizi, A., Carter, S.,
Jensen, D.: Http extensions for distributed authoring
– webdav. Technical report, The Internet Society
(1999)

[4] Clemm, G., Reschke, J., Sedlar, E., Whitehead, J.:
Web distributed authoring and versioning (webdav)
access control protocol. Technical report, The Internet
Society (2004)

[5] Völkel, M., Sure, Y.: Rdfreactor - from ontologies to
programmatic data access. Poster and Demo at
ISWC2005 (2005)

[6] Gifford, D.K., Jouvelot, P., Sheldon, M.A., James
W. O’Toole, J.: Semantic file systems. In: SOSP ’91:
Proceedings of the thirteenth ACM symposium on
Operating systems principles, New York, NY, USA,
ACM Press (1991) 16–25

[7] Soules, C.A.N., Ganger, G.R.: Why can’t i find my
files? new methods for automating attribute
assignment. In Jones, M.B., ed.: HotOS, USENIX
(2003) 115–120

[8] Mills, B.: Metadata driven filesystem (2005)

[9] Mazières, D.: A toolkit for user-level file systems. In:
Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, Berkeley, CA, USA,
USENIX Association (2001) 261–274

[10] Ayala, D.: Foxylicious - firefox and del.icio.us
bookmark integration (2005)



Short Bios
Stephan Bloehdorn
Stephan Bloehdorn is researcher at Institute AIFB at the
University of Karlsruhe. He received his Master from the
University of Karlsruhe after studying Information Engi-
neering and Management and is currently pursuing a Ph.D.
Stephan’s research interests include machine learning on se-
mantic web data, text mining, knowledge representation,
user interaction and knowledge management. Stephan is
currently working in the EU IST Project SEKT. Recently,
Stephan has co-organized the ICML 2005 Workshop on
Learning in Web Search.

Max Völkel
Max Völkel is a researcher at the Institute AIFB at the
Universität Karlsruhe, where he is working on his Ph.D.
He did his Master in Computer Science at the Universität
Karlsruhe. His research interests include personal knowledge
management, semantic wikis, knowledge representation and
Semantic Web infrastructure. Max is currently working in
the EU IST Project NEPOMUK. He is currently organising
a workshop on semantic wikis at the ESWC 2006.


