
Towards a Wiki Interchange Format (WIF)

Opening Semantic Wiki Content and Metadata

Max Völkel

FZI Forschungszentrum Informatik, Universität Karlsruhe, Germany
voelkel@fzi.de

Abstract. Wikis tend to be used more and more in world-wide, intranet
and increasingly even in personal settings. Current wiki content is a data
island. People can read and edit it, but machines can only send around
text strings without structure. Migration, publishing from one wiki to
another one and choice of syntax are holding back broader wiki usage.
In this paper we define a wiki interchange format (WIF) that allows
data exchange between wikis and related tools. Different from other ap-
proaches, we also tackle the problem of page content and annotations.
The linking from formal annotations to parts of a structured text is
analysed and described.

1 Introduction

Wikis tend to be used more and more in world-wide, intranet and increasingly
even in personal settings. We believe, the easy way of creating arbitrary struc-
tured and linked pages lead to wide-spread adoption of wikis.

Many wikis, many wiki syntaxes The increasing usage of wikis leads to new
problems, as many people have to use multiple wikis, e. g. a company intranet
wiki, a wiki for collaboration with an external partner and Wikipedia. Some
persons additionally run a local wiki engine on their desktop.

The most popular wiki is Wikipedia, one of the top 30 most used websites1

in the world. Wikipedia runs on MediaWiki2 (314 Mrd), using MediaWiki syn-
tax. Company intranets often run on TWiki3 (30 Mrd). There are over 130
wiki engines listed in the C2 Wiki4. Google queries reveal that MediaWiki and
TWiki are the most popular engines, with rising tendency. But despite the enor-
mous growth of these two engines, many other wiki engines have rising Google
hit counts as well5. The following wiki engines had high Google hit counts as
of 28.03.2006 (sorted in descending order): PukiWiki (8,7 Mio), TikiWiki (7,1

1 according to Alexa
2 http://www.mediawiki.org.
3 http://www.twiki.org.
4 http://c2.com/cgi/wiki?WikiEngines.
5 Based on Google queries since 2004. Google hit count can only be a rough indicator

of wiki engine popularity

voelkel@fzi.de
http://www.mediawiki.org
http://www.twiki.org
http://c2.com/cgi/wiki?WikiEngines

Mio), MoinMoin (6 Mio), Atlassian Confluence (4,2 Mio, commercial), PhpWiki
(4 Mio), PmWiki (3,9 Mio), Xwiki (3,3 Mio), JspWiki (1,8 Mio), SnipSnap (1,8
Mio), JotSpot (1,5 Mio), ZwiKi (0,9 Mio), UseMod (0,7 Mio), SocialText (0,7
Mio, commercial). Innovation in wiki engines (and wiki syntaxes) is still high.
New wiki engines and new wiki features (such as semantic annotations and plu-
gins) need syntax extensions as well.

Interoperability problem But despite their open-ness, current wikis are data is-
lands. They are open for everyone to contribute, but closed for machines and
automation. Of course, scripts that interact with a wiki over the web are easily
written. But its hard for such scripts to do useful things with a page’s content.
Especially data integration and data migration suffer from an interoperability
problem: It is not easily possible to export a page from one wiki and import it
to another one. Ideally, one could export a wiki page from one wiki and import
it into another wiki, using a different wiki syntax and offering a different set
of features. Unfortunately, there exist many different wiki engines, all using a
different syntax.

Reducing integration costs with an intermediate format Instead of writing con-
version scripts between each pair of available wiki engines we propose the use of
a wiki interchange format. This reduces the implementation costs roughly from
n2 to n for n different wiki engines. In particular we propose a Semantic Wiki
Exchange FormaT (SWIFT) which abstracts away from the wiki syntax and
HTML output. We argue that Semantic Web technologies are flexible and open
enough for this task. Opening the data model of wiki engines would allow the
independent creation of multiple wiki syntaxes and user interfaces. This paper
tries to show how Semantic Web concepts can be beneficial for wiki development
and explains some basic concepts.

Semantic Wikis Recently, wikis have been combined with Semantic Web tech-
nologies. Semantic Wikis allow users to annotate pages or parts of pages with
formal metadata. A wiki page in a semantic wiki thus consists of the structured
text, formal statements and the link from the formal statements to parts of the
structured text. For data exchange, we face even more problems: We must export
all three kinds of data – only this allows full round-tripping.

1.1 Structure of this paper

First we analyse requirements (see Sec. 2). In Sec. 3, we elaborate on what
constitutes to the wiki data model and which is the right layer of abstraction
for an interchange format. We also discuss interaction with wikis on the web.
In Sec. 4, we make a proposal for a wiki interchange format (WIF) and a wiki
archive format (WAF). We present a hypothetical Wiki Mediation Server to
handle runtiem aspect of wiki migration. We give a short evaluation inSec. 5
and review some relaated work in Sec. 6. Finally, in Section ?? we conclude on
present future work.

2

2 Scenarios and Requirements

Now we briefly review scenarios, that demand for a wiki interchange format
(WIF), as they are currently not supported by existing wiki engines:

Migrating wiki content. Currently, the only way to copy content from one
wiki to another one is through copy & paste and careful manual reformatting
of the text. This is especially painful, as most wikis offer the same content
formatting and structuring abilities anyways, namely those found in HTML.
This should be no surprise, as most wikis render their content as HTML
anyways. The rising popularity of personal wikis adds even more weight to
the need of exchanging content between wikis.

Wiki migration. Sometimes, the complete content of one wiki should be mi-
grated to another wiki, e. g. because another wiki engine should be used.
This implies migrating all pages. Ideally, user accounts and page histories
would also be migrated. But for pragmatic reasons, we leave this out of the
first version of WIF.

Wiki syntax united. One of the most often expressed problems6 are the dif-
ferent wiki syntaxes. Ideally, one could abstract away the different syntaxes
and use the most favoured syntax on all wikis.

Wiki archiving. Creating a browsable off-line version of a wikis conent, e. g.
to read on the train or as a backup is also desired by some wiki users.

Wiki synchronising. E. g. synchronising a local wiki with a public or shared
wiki. One of the big advantages of a wiki is the easy linking ability: users
just have to remember the page title to create a link. External links require
much more effort. Persons participating in multiple access controlled team
wikis have to remember many logins, navigation schemes and wiki syntaxes.
Ideally, on could change a page in wiki a and have it automatically changed
in wiki b as well.

From these scenarios and additional thinking, we can derive a number of require-
ments for a WIF:

Round-tripping: Most obviously, full data round-tripping is the overall goal.
Ideally, one could export a complete wiki into WIF and import it back again
into another wiki engine (or other tool) without any loss of data. If we have
two wikis a and b, where a has a very rich and b a very poor model, the
transition a → b (i) would be useful for users of wiki b, even if a lot of
structure within the data would be lost due to the restricted data model of
wiki b. The mapping b → a (ii) would also in general be beneficial for the
users of wiki a. The problems arise with mappings like a → b → a (iii).
Now the users of wiki a would be faced with a loss in data structure richness
which they used to have before the export and re-import of data. This is
a problem that cannot be solved in general. As the mappings (i) and (ii)
are useful in practice for wiki migration, we have to find a format that is
expressive enough.

6 personal communication with the authors

3

Easy to implement: as we need a way to obtain the WIF for each different
wiki engine, it’s important to keep development costs low.

Renderable: WIF files should be renderable in standard browsers.
Completeness: If a wiki lists e. g. all pages in the category ”employee” using

some kind of plugin, a WIF should export this information in an appropriate
format. Wikis with a similar powerful plugin system would profit from an
interchange format that keeps a reference to the plugin used. Less capable
wikis, however, would need the content generated by the plugin, as they
have not the power to generate the content themselves. Users migrating
from a wiki with a particular feature to another wiki engine would rather
profit from having dynamic content materialised into static content than not
having access to that content at all.

Compactness: The single-page-WIF needs to encode all structural information
of a wiki, e. g. nested lists, headlines, tables, nested paragraphs, emphasised
or strongly emphasised words. But it does not need to encode font size or
font color.

Ease of Use: It should not only be easy to generate single-page-WIF, it should
also be easy to work with it.

3 Analysis and Discussion

In this section we argue why an interchange format has to exchange data on the
level of the wiki data model an not on the wiki syntax level. Additionally, we
show which parts of the wiki data model are relevant for a WIF.

Interchange of wiki syntax or wiki structures? One could try to standardise the
wiki syntax, as many people suggested on diverse wiki and web pages [1]. A
standard markup would indeed be of great benefit for novice users and data
migration (assuming data storage would also be standardised). But in reality,
existing wikis are unlikely to change the established syntax rules. For new wiki
engines, the MediaWiki syntax should be considered, as it is likely to be the
most widely known syntax7.

As standardising wiki syntax is not a feasible solution for the wiki migration
problem, we propose to define a standard format for the data model. We want
to exchange the data structures of a wiki page, abstracting away form the syn-
tax used to create these structures. E. g. a bulleted list is a structural concept,
worth exporting, while the syntax that was used to create this structure (star or
minus sign at the beginning of a line) is of less interest for other wikis or tools.
Additionally, we want to exchange all other relevant data of a wiki, besides the
pages.

Unfortunately, most wiki engines have no formal data model published. Their
data models are defined only by their implementation of wiki syntax and ren-
dering. In order to obtain a common wiki data format, one would have to

7 Some new Semantic Wikis such as IkeWiki adopt this approach

4

– formalise existing wiki data models including page graph, page metadata
and the structured page content, and

– identify the union of all formalised data models.

We looked into the data models of SnipSnap, MediaWiki and JspWiki.

What is in a wiki? Several definitions are possible, we go for a definition from
the end-user point of view. The end-user has two ways of interacting with wiki
content. She can either browse (read-only) the hypertext version or create and
change content of pages using wiki syntax. It is the content written by users, that
has to be migrated to other wiki engines. Some important wiki features such as
,,backlinks” are inferrable form the user-entered content. Arguably, usage data
such as ,,10 most accessed pages” or the ,,recently changed pages” contribute
considerably to the wiki usability. This data cannot be manipulated directly by
users through the web interface. So we have to ask ourselves:

Wiki
Page

User Attachment

Section

Title
List

Table

Paragraph

Link
Time

…

*

*

*

*

*

*

Page Graph Page Content

Fig. 1. A high-level view on the wiki data model

What constitutes the data model of a wiki? The content of a wiki is defined by
the page graph including page metadata and the actual content of pages. Figure
1 shows some of the most common elements of a wiki data model. Existing
exchange formats tackle the page graph part (as XML dialects), but often simply
embed the page content part as wiki syntax (e. g. MediaWiki, SnipSnap). This is
maybe due the fact that most wiki engines have an internal representation of the
page graph but not necessarily a detailed representation of a page given in wiki
text. In fact, pages are often rendered by wikis using a cascade of text search
and replace commands using carefully crafted regular expressions. To sum up,
we distinguish three levels of data for wiki content:

A wiki page consisting of:

Content structure: e. g. headlines, nested lists, tables, or other elements
that state a visual relation between content items.

Content style: e. g. font size, font color, bold, italic or other visual render-
ing of content items.

5

Content semantics: e. g. user authored content, backlinks, lists generated
by a plugin or macro, embedding of other wiki pages, or a reference
to a variable that display the number of pages in a wiki. The content
semantics are invisible to e. g. an HTML processor.

Metadata about a wiki page. We have two kinds of metadata (at least in
a Semantic Wiki context):
Explicit metadata as stated by semantic annotations or as defined in spe-

cial user interface elements (i. e. access rights).
Application metadata such as last editor, creator of a page, previous ver-

sion. This metadata cannot be changed directly by the user, only indi-
rectly through application usage.

Global wiki data such as user accounts. In some Semantic Wikis, such as
SemWiki [7], users can make semantics annotations, that are not bound
to a particular page. Rather, the annotations belong to the wiki as a whole.

Extending the data model with annotations. Semantic Wikis add the notion of
formal annotations to wikis. We model an annotation consisting of three parts:

1. A real world artefact that is annotated, such as a person, a book, or a web
resource.

2. A formal identifier for the real-world artefact, such as an ISBN number or a
URI.

3. Formal statements about the real-world artefact, using the formal identifier
as a placeholder. Formal annotations are typically represented as RDF using
RDFS or OWL as the representational ontology..

Note that the formal statements can also include information about provenance
or scope of the annotation. The most difficult part for formal annotations is
an agreement about (2): Which formal identifier stands for which real-world
artefact? In RDF, these problems get even worse by the fact that URIs are
used for formal identifers which are a superset of URLs, which are locations of
real-world web resources, e. g. an HTML page. This problem is known as the
URI ”crisis”. Fortunately, there is an elegant, pragmatic solution, because web
browsers do not transmit the fragment identifier part to the web server. As long
as we limit ourselves to annotate complete web resources and not parts of them,
appending a ”#” to a web resource URL a leads to a unique URI a′ suitable
for use in RDF. This URI a′ then describes ”the primary concept mentioned in
the human-readable representation of the resource a”. Technically, it would be
possible to have web resources with an address which contains a ’#’, but we can
simply ignore those hypothetical cases.

How do we obtain the data from a wiki? We have two or three options:

– As each wiki has some kind of data persistence, the wiki administrator could
access a wikis content on this layer. But each wiki has a different kind of
persistence (e. g. text files, data bases, RDF, . . .), so writing adapters would

6

require very different skills. In order to migrate from abandoned wiki engines
which are no longer maintained or where the user who wishes to migrate has
not the necessary admin rights, we need another solution.

– For open-source wiki engines, one could add a new export function to the
code base. This would require to handle a large number of programming
languages.

– As almost every wiki has an HTML output, one could also try to get the
content from there. Simulating a browser that clicks on ”Edit this page” and
other wiki core functions, one could get access to the same set of data as a
user.
Current Wiki-APIs (XML-RPC based ones can be found e. g. in JspWiki8,
Atlassian Confluence9, XWiki10) stop at the page graph level. A page can
either be retrieved as raw text (wiki syntax) or rendered as HTML. The
HTML version is often enriched by additionally inferred information, such
as backlinks. Some information is harder to extract from HTML than from
wiki syntax, e. g. the difference between wikilinks and external links can only
be computed by comparing the base URL of a page with the link target.
The basic motivation is this: Wiki engines use quite different syntaxes, but
(almost) all wikis emit HTML in the user interface.

4 Design

In this section we describe the design of the wiki interchange format (WIF) for
a single page an the wiki archive format (WAF) for a set of wiki pages.

4.1 WIF – A single-page wiki interchange format

We map wiki pages to folders on a storage medium. Each folder contains:

index.html - the unchanged html file corresponding to the wiki. Includes all
navigation buttons and forms. This view helps to identify content visually.
CSS files should be included. This file can be obtained with simple HTTP-
GET tools, such as WGET.

wiki.txt - the source code in wiki syntax. This is a simple to implement fall-
back, if other steps in the conversion process produced wrong or suspicious
output.

wif.xhtml - the wiki interchange format. In order to fulfill requirement ”Ren-
derable” (c. f. Sec. 2, WIF should be a subset of HTML or XHTML. We
decide to use an XHTML subset, which is both open for machine process-
ing, due to its XML nature as well as human viewable, using a standard
browser. The subset should be small, in order to facilitate further processing

8 http://www.jspwiki.org.
9 http://confluence.atlassian.com.

10 http://www.xwiki.org

7

http://www.jspwiki.org
http://confluence.atlassian.com

(req. ”ease of use”). A study by Google shows 11, that most HTML pages
contain an average of only 19 different elements.

index.rdf - Annotations as RDF files. Meta-data, such as the distinction be-
tween wiki-link or external link is carried by using special XHTML attributes
and values. This approach is inspired by Microformats12. More complex or
user-given page meta-data should be stored in a linked RDF file.

Attachments - Like emails, wiki pages can have arbitrary files attached to
them. In order to store such files, we simply store them as files and link
them from the WIF page. File creation date and other file related metadata
can be encoded in the native file attributes.

Extending WIF for full round-tripping. In order to round-trip subtleties such as
templates and macros, we model them as annotations. The basic wiki page is
exported as rendered. This fulfills requirement ”Completeness” and ensures that
another (even less capable) wiki, will show the page as the user knows it.

For macros and templates, annotations carry the additional hint that and
how this part of the page was generated. Simple tools can only process the
page as is, while smarter tools can exploit the knowledge of the annotations and
maybe even re-run the macro or template code.

Obtaining WIF from HTML. In order to be easy to implement, we process the
HTML output of a wiki. Although we loose some information (such as unimpor-
tant syntax variations), we can obtain most information even from the HTML
data. We simply compare the ¡base href¿ of the page with the link targets. If
the query string or last path segment (for mod rewrite) matches the target, it’s
a link to the wiki. We ignore CSS stylesheets and some presentational tags, in
order to become a more concise WIF, fulfilling requirement ”Compactness”.

Which wiki structures are most important? We can distinguish two levels of
formatting:

Linking (¡a¿) is probably the most important element of a wiki. Wikis distin-
guish links to other wiki pages in the same wiki (wiki-links), links to pages
in other wikis (interwiki-links) and links to any other web resource (external
links).

Layout (inline-level) is used to highlight parts of a text item. Basically, only
bold and italic text can be used. For bold, HTML offers ¡strong¿ or ¡b¿,
for italic ¡em¿ or ¡i¿. In single-page-WIF, we use only ¡strong¿ and ¡em¿, to
simplify its usage (req. Ease of Use).

Structure (block-level) is used to relate textual items on a page. Structural
tags are paragraphs (¡p¿), headlines (¡h1¿ - ¡h6¿) lists (¡ol¿, ¡ul¿, ¡li¿, ¡dl¿,
¡dt¿, ¡dd¿) and tables (¡table¿, ¡tr¿, ¡td¿). Additionally, pages can contain
horizontal lines (¡hr¿) and pre-formatted sections (¡pre¿, ¡code¿).

A WIF-page thus has the structure shown in Fig. 2. Note: WIF-Pages should
11 http://code.google.com/webstats/index.html.
12 http://www.microformats.org.

8

http://code.google.com/webstats/index.html
http://www.microformats.org

<?xml version="1.0" encoding="utf-8" ?> <!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"> <html>

<head>

<title>...wiki page title ... </title>

</head>

<body>

... page content ...

</body>

</html>

Fig. 2. The basic WIF page

always be UTF-8-encoded, to simplify further processing. The doctype should
be XHTML 1.1. The title-element should be present and contain the wiki page
title. The header may contain arbitrary additional elements.

To sum up, element tags used by WIF-processors in the WIF page body are:
a, dd, dl, dt, em, h1, h2, h3, h4, h5, h6, hr, li, ol, pre, strong,
table, td, tr and ul. Other elements in the body of a WIF page may be
ignored. The WIF page has to be a valid XHTML document, i. e. the usual
XHTML element nesting rules apply.

We reserve some attributes and values to encode special wiki semantics: In
links (¡a¿), we use the attribute class to specify the nature of a link: wiki,
interwiki or external. This approach is inspired by microformats ideas 13,
and keeps WIF-pages valid XHTML and makes rendering in a browser easy.
Note that an HTML-element may have multiple space-separated classes. As the
title of a wiki page is often encoded, in order to make it a valid URL or filename,
each link to an internal or external wiki page should also have a title-attribute
with the wiki page title.

Linking pages with annotations In order to keep the link between wiki pages
(represented as XHTML) and their annotations (represented as RDF), we discuss
a number of options:

Atomize XHTML: The idea is to mimic the WIF page model with RDF pred-
icates. Thus we would end up having a relation :hasHead which relates a
node of rdf:type :head with a node of rdf:Type :body. Instead of using
blank nodes for the nodes, we suggest to use random unique URIs, as de-
scribed in [8]. The content of XHTML tags would be stored as RDF literals
using this schema:

rnd://12345 rdf:value "The content of an paragraph"

But, although RDF literals are now addressable, annotations are only pos-
sible on this (sometimes too coarse) level of granularity.

13 http://www.microformats.org.

9

http://www.microformats.org

Embed Page: One could embed the whole WIF (which is legel XHTML) as
an XML literal into an RDF graph. Again, we make the literal referencable
by stating

rnd://12345 rdf:value "<?xml ... </html>"^^XMLLiteral

Referencing parts of the xml literal could be achieved by appending an XPath
14 to the URI (rnd://12345) representing the XML Literal, e. g. leading to
the full URI rnd://12345#/html/head/title to denote the titel of the WIF
page.
The problem with this approach lies in the non-standardised usage of Xpath
expressions in fragment identifiers. Thus RDF query languages cannot oper-
ate on the fragments of the XMLLiteral.

Link RDF file: We leave the XHTML file as a separate page, but add a link to
the ¡head¿-element, and let it point to an RDF file. In this RDF file, we can
reference the XHTML page using the local filename (e. g. HowToPrint.html)
and parts of it by appending URI-encoded XPath expressions to it (e. g.
HowToPrint.html

Embed RDF in XHTML: A W3C proposal dubbed ”RDF/A” specifies how
to encode (even arbitrary) RDF as XHTMl attributes (hence the ”A” in the
name). Although GRDDL15 can extract the RDF back out of the XHTML
file, this methods seems rather cumbersome, especially for large amounts of
RDF.

For binary files, we propose a pragmatic approach: Each file called filename.ext
can have an accompanying file filename.rdf which stores the metadata of that
file. Bot files are included in the wiki archive format, which is descirbe din the
next section.

4.2 WAF – The wiki archive format

Two use cases need a complete WAF, as opposed to a single-page-WIF:

Wiki migration. Here we have to handle the requirement to move a set of
wiki pages at once. The easiest way to move multiple wiki pages across the
network is probably to re-use an archive format such as the zip format. The
same approach is taken in the Java world to handle a set of Java class files as
a .jar file, which is a zip archive. Another popular example of zip file usage
is the open office format 16, which stores a set of XML files that together
constitute one document.

Wiki archiving. Using a zip file with subdirectories for each wiki page has
the additional benefit that, if done right, this archive can be extracted and
viewed off-line, using a standard browser. Hierarchical namespaces can be
modeled as subfolders.

14 http://www.w3.org/TR/xpath.
15 http://www.w3.org/2004/01/rdxh/spec.
16 http://www.oasis-open.org/committees/office/.

10

http://www.w3.org/TR/xpath
http://www.w3.org/2004/01/rdxh/spec
http://www.oasis-open.org/committees/office/

We propose to use a zip archive consisting a set of WIF files. For Semantic
Wikis, we also include RDF files, linked from XHTML files. For pragmatic rea-
sons, we decided not to include different versions of a wiki page in the inter-
change format. WIF files should be legal XHTML files and the links between
the pages should point to each other (e. g. a wiki page a linking to a page called
”HowToPrint” would contain the snipped ... <a href="HowToPrint.html"
title="HowToPrint">HowToPrint ... All WIF files should have a file ex-
tension of ”.html”. RDF files can have any extension (besides .html) as and
should be linked from the XHTMl files. Background knowledge, not related to
a particular page should be stored as index.rdf.

For Semantic Wikis it might be more suitable to have the whole contents of
WAF as a single RDF file. Unfortunately, this brings us back to the problem how
to represent XHTML structures in RDF. The best approach seems to create a
wiki structure ontology that mimics XHTML.

4.3 Wiki Mediation Server

At runtime, we need a component that provides translation from one wiki into
WIF and from WIF back into wiki syntax. For migration, the component should
also interact with wikis through their web interfaces, simulating a human editor.
This idea is similar to WikiGateway [5], but WikiGateway does not address the
page structure translation. In order to provide WIF-translation services also for
other tools, we use a service oriented architecture, as shown in Figure 3. This
architecture allows a user independent of the wiki engines source and target to
migrate wiki content. The functions offered by the wiki mediation server are:

GetPage(t) retrieves a WIF representation of a wiki page p, given it’s title t.
PutPage(p,t) converts a page p given in WIF into a wiki syntax of choice and

stores it under a given page title t.
GetRecentChanges(u) gives a list of pages (with URLs) that have been changed

after a given point in time, including a time stamp indicating the last change.
GetIndex() returns a list of all pages stored in the wiki. The list should contain

URLs.

We show now how this design solves the scenarios given in Sec. 2 and then
describe the design of the specific functions.

Source Wiki Target Wiki

Wiki Mediation Server

HTML, RDF

WIF

Wiki Syntax

Office formats, …

Fig. 3. Software Architecture for Remote Wiki Migration

11

Migrating wiki content: In order to migrate a page with title t from wiki a
to wiki b, we call migrate(t,a,b) which calls in turn x = a.getPage(p)
and then b.putPage(x).

Wiki synchronising. In order to synchronise the wiki a with wiki b, the wiki
mediation server has regularly to invoke a.GetRecentChanges, for all pages
that have been changed after the last invocation of this function. Then, for
each page p with title t that has been changed, we call migrate(t,a,b).

Wiki syntax united. In order to use an arbitrary wiki syntax s for a wiki a,
we propose to use a proxy-wiki, which works as follows. For rendering a page
with title t, we return a.getPage(t). When a user wants to edit a page, we
call a.getPage(t), and convert the obtained WIF into syntax c. Upon page
save, we convert the wiki text in syntax c back to WIF and put the result r
using a.putPage(r) back into wiki a.

Converting from HTML to WIF an back to wiki syntax Two syntax translations
are needed:

HTML to WIF. As indicated by requirement ”Compactness”, we choose to
extract the WIF from the HTML output. As less than 1% of all web pages
are valid (X)HTML [4], in the sense of passing the W3C validator17, we can-
not expect wikis to emit only valid HTML. Fortunately, there are a number of
software components available, that mimic the parser behaviour in browsers
to transform ill-formed HTML into well-formed (X)HTML. As analysed in
[6], the best performing component is CyberNEKO 18. CyberNEKO trans-
forms any ill-formed HTML input into well-formed XML, add missing open-
ing and closing tags as necessary. The resulting XML can be transformed
with a custom Extensible Stylesheet Template (XSLT).
The pages are fetched with the Jakarta HttpClient, using HTTP Basic Au-
thentication. Custom XSL stylesheets transform the obtained XML into WIF
(e. g. distinguish internal from external links).

WIF to Wiki Syntax. WIF should be a strict XHTML subset. This allows
to use XSLT stylesheets to convert WIF back into a wiki syntax of choice.
XSLT stylesheets can be run on all platforms, many programming languages,
and even in some browsers.

A proof-of-concept implementation has been developed. It exports a Snip-
Snap wiki – accessed via the web interface – into WAF. The page index is read
from the page snip-index and post-processed with XPath [2] expressions to get
the actual page names.

A demo server is currently set up, serving a WAF-archive for any SnipSnap
wiki. A login is simulated in order to obtain the text-files in wiki syntax.

5 Evaluation

No formal evaluation has been done. Instead, we review what we achieved.
17 http://validator.w3.org/.
18 http://people.apache.org/∼andyc/neko/doc/html/.

12

http://validator.w3.org/
http://people.apache.org/~andyc/neko/doc/html/

Using WIF can dramatically lower the costs required to migrate wiki content.
As in most integration problems using an intermediate format (WIF) reduces
the number of translators needed from n2 to 2n. The process of writing the
translators from HTML to WIF can partially be automated (see [6]. As WIF
consists of less elements than full XHTML, XSL stylesheets to convert WIF back
into wiki syntax are easier to write.

Future wikis can use the Wiki Mediation Server to offer real-time wiki syntax
of choice. To do this, they have to act as a proxy. When a user edits a page, the
user entered text in syntax a is run through the parser of a wiki a, resulting in
HTML. That HTML is converted first to WIF and then to wiki syntax b. This
syntax b is then stored in wiki b.

First tests show that the transformation from SnipSnap’s HTML to clean
XHTML and than via custom XSLT to WIF is indeed possible. Another XSLT
was written to convert WIF to MediaWiki syntax.

Mapping wiki pages to folders leaves much freedom. The format is extensi-
ble, i. e. more files can be stored in the same directory, e. g. different versions.
Complete static web sites can be generated from a WAF file, in fact, a WAF file
is a static web site, in one zip file. This makes WAF also an ideal wiki backup
format, with no need to keep the original server infrastructure alive. Alas some
features (e. g. full-text search) get lost.

The problem with this approach is the reference management. To create a
valid reference between static wiki pages, one has to link to /PageName/index.html,
instead of just the page name.

6 Related Work

There are several proposals about wiki standardisation. The WikiModel19, ad-
dresses an in-memory model for wikis in Java, using a particular semantic model
(pages with sections, allowing page inclusion). WikiModel includes a clever wiki
syntax and parser design.

WikiWyg20 is an approach to offer in-browser WYSIWYG editing of wiki
content. To do this, WikiWyg uses Javascript to convert from DOM to wiki
syntax.

Oddmuse21 has an integration with Emacs 22 which allows users to read and
update pages with Emacs, a desktop-based text editor.

Similar to WikiGateway, an extension to JSPWiki written by Janne Jalkanen
[3], allows to get and put pages. DavWiki exposes the wiki pages as text files in
a WebDAV directory. Note that the syntax conversion problem is left untackled.

19 http://wikimodel.sourceforge.net/.
20 http://www.wikiwyg.net.
21 www.oddmuse.org.
22 http://www.gnu.org/software/emacs/.

13

http://wikimodel.sourceforge.net/
http://www.wikiwyg.net
www.oddmuse.org
http://www.gnu.org/software/emacs/

SweetWiki23 uses RDF/A to encode semantic annotations in HTML pages.
Annotations can only be on the page level, not allowing annotating parts of a
page.

IkeWiki offers a custom XML-based export format. It is similar in spirit to
WIF, as it exports only the core structures. But different from WIF, IkeWikis
export is not suitable for viewing in a browser.

7 Conclusion and Outlook

We have shown how a wiki interchange format should be designed. Although our
model is still in a prototype stage, we have carved the path for the development
of a true Wiki Interchange Format.

Future work will go into implementing a proof-of-concept for a Wiki Media-
tion Server. This paper is intended to bootstrap a discussion in the (Semantic)
wiki community, in order to reach consensus about the requirements and design
of a WIF. We hope to continue the discussion at the WikiSym 2006 and on the
web site http://www.wikisym.org/wiki/index.php/WSR 3.

Acknowledgments This research was partially supported by the European Com-
mission under contract FP6-507482 (Knowledge Web). The expressed content
is the view of the authors but not necessarily the view of the Knowledge Web
Network of Excellence as a whole. The authors would like to thank Sebastian
Gerke and Werner Thiemann for their help in creating the Wiki Exchange For-
mat. Thanks also to Dirk Riehle for initiating the BOF at the WikiSym 2005,
where all this started. Thanks also to Mikhail Kotelnikov for lengthy and fruitful
discussions.

References

1. M. Altheim. Inter wiki markup language (iwml), 03 2004. Cited in 3.
2. J. Clark and S. DeRose. Xml path language (xpath) version 1.0. Tech. rep., W3C,

Nov 1999. Cited in 4.3.
3. J. Jalkanen. Davwiki the next step of wikirpcinterfaces? In Proceedings of Wikima-

nia 2005 - The First International Wikimedia Conference. Wikimedia Foundation,
JUL 2005. Cited in 6.

4. M. L. Noga and M. Völkel. From web pages to web services with wal. In NCWS 2003.
Mathematical Modelling in Physics Engineering and Cognitive Science, V”axj”o,
Sweden, NOV 2003. Cited in 4.3.

5. B. Shanks. Wikigateway: a library for interoperability and accelerated wiki develop-
ment. In WikiSym ’05: Proceedings of the 2005 international symposium on Wikis,
pp. 53–66. ACM Press, New York, NY, USA, 2005. Cited in 4.3.

6. M. Völkel. Extraktion von xml aus html-seiten – das wysiwyg-werkzeug d2c. Diplo-
marbeit, MAY 2003. Cited in 4.3 and 5.

7. M. Völkel. Semwiki - a restful distributed wiki architecture. In Proceedings of the
First International Symposium on Wikis. San Diego, USA, OCT 2005. Cited in 3.

23 http://wiki.ontoworld.org/wiki/SweetWiki.

14

http://www.wikisym.org/wiki/index.php/WSR_3
http://wiki.ontoworld.org/wiki/SweetWiki

8. M. Völkel, et al. Semversion - versioning rdf and ontologies. Knowledge Web
Deliverable 2.3.3.v2, University of Karlsruhe, JAN 2006. Cited in 4.1.

15

	Towards a Wiki Interchange Format (WIF)
	Max Völkel

