
RDFReactor – From Ontologies
to Programmatic Data Access

Max Völkel
FZI Forschungszentrum Informatik, Karlsruhe, Germany

voelkel@fzi.de

ABSTRACT
Developers used to object oriented programming have to
make a paradigm shift in order to produce and manage Se-
mantic Web data, e. g. RDF.

In this paper we describe the tool RDFReactor which
transforms a given ontology in RDF Schema into a famil-
iar, dynamic, object-oriented Java API – at the push of a
button. Developers then are able to interact with java in-
stances, thus allowing them to stay in their own world. The
generated proxy objects contain no state and delegate all
method calls to RDF model updates and queries.

RDFReactor potentially turns every Java developer into
a Semantic Web application developer and enables them to
use RDF correctly, efficiently and effectively without even
knowing it. It is downloadable (GNU LGPL) at http://

rdfreactor.ontoware.org.

1. INTRODUCTION
A key promise of the Semantic Web is that of global inter-

operability, i. e. applications developed independent of each
other will be able to read and use each others data. Ontolo-
gies are key enablers for the Semantic Web, they describe
the semantics of data to enable ad-hoc interoperability. The
Semantic Web is already rich in ontologies, but poor in ap-
plications that use semantic data. Why? Some evidence can
be found by using Google queries which e. g. show millions
of hits for “Java developer” and only hundred thousands of
hits for queries like “ontology engineer”. This might indicate
a shortage of ontology engineers, who currently can also be
seen as developers for ontology based applications.

Reuse of existing ontologies is crucial for efficiently and ef-
fectively reaching semantic interoperability on a global scale.
Unfortunately, developers used to object oriented program-
ming have to make a paradigm shift in order to produce and
manage Semantic Web data, e. g. RDF 1.

All generated RDF data should be described by an ontol-
ogy, in order to be usable. The task to make an existing
Java application interoperable with the Semantic Web is a
difficult task, as developers have to learn at the same time
the RDF data model, RDF Schema syntax and semantics,
and an API for model manipulation.

The main contribution of our work is to leverage the power
and quantity of Java developers and Java tools for the Se-

1http://www.w3.org/RDF/

Copyright is held by the author.

Schema Instances

RDF DataRDF Schema

Code
Generator Runtime

R
D

F
Ja

va

Stateless
Java Instances

Java
Classes

Figure 1: Mapping the two worlds

mantic Web by significantly reducing this burden. We intro-
duce RDFReactor, a new open-source tool, which transforms
a given RDF Schema ontology into an object-oriented Java
API with domain-centric methods like paper.setAuthor(

Author a) instead of model.addTriple(...). This enables
developers to interact with java proxy objects, thus allow-
ing them to stay in their own world and at the same time
to make use of the advantages RDF offers.

2. OVERVIEW
We distinguish two phases in application development:

API generation followed by traditional development. An
overview of the whole system can be found in Fig. 1: An
RDF Schema (or an OWL ontology) is run once through
the RDFReactor code generator which generates a number
of type-safe, domain-specific Java classes. At runtime, in-
stanced of these classes act as stateless proxies on the RDF
model.

In the remainder of this Section we will first explain the
features of the generated API and explain how these fea-
tures were realised. Then, we explain features of the code
generator and explain how those were realised.

2.1 Runtime Features
In this Section we explain the mapping from the object-

oriented Java world to the triple-oriented RDF world. Ba-
sically, we map RDFS (or OWL) classes to Java classes and
RDF properties to Java properties, accessed through get()

and set(value) methods.
Additionally, every class generated by RDFReactor offers

http://rdfreactor.ontoware.org
http://rdfreactor.ontoware.org
http://www.w3.org/RDF/

the methods Type[] getAll(), add(Type x) and remove(

Type x), do deal with the multi-value nature of RDF prop-
erties. In fact, get() throws an exception if multiple values
are present in the RDF model. The set-Method internally
removes all values and then adds the given value.

Note that all API methods are type-safe. A developer
using an RDFReactor generated API thus has full support
from the Java compiler and it’s IDE, e. g. auto-completion
of method names.

At runtime, instances of the Java classes model resources
in the RDF model. In the constructor, a reference to an
RDF model and an identifier has to be supplied. We allow
both for URIs or blank nodes to act as identifiers. There
are no limitations with respect to blank node handling. For
the RDF model manipulation, we use an abstraction layer,
RDF2Go2, which has adaptors to Jena[1], Sesame, YARS
and others.

One of the key advantages of using an RDFReactor gen-
erated API is synchronicity: Each method set or add re-
quests is translated into an add statement operation, each
get or getAll method call is executed as a query to the RDF
model. All java instances are completely stateless, they act
like proxies for RDF resources. Additionally, the API offers
the following set of operations:

SPARQL: The Bridge class supplies a method to perform
arbitrary SPARQL SELECT queries and return the
result as type-safe Java domain classes.

List support: We offer methods to transform rdf:List con-
structs to Java lists and vice vers.

Map support: Each class generated by RDFReactor ad-
ditionally implements the Java Collections Map in-
terface, mapping properties to keys and the objects
of RDF statements to Map entry values. Again, all
calls are transparently translated into triple update
and query operations, no state is duplicated at any
time.

Inverse properties: As properties in RDF often hold ref-
erences to other objects it makes a lot of sense to query
also in the other direction. Instead of asking “whom
do I know?” it is also intersting to find out“who knows
me?” on the level of RDF resources. Thus the gener-
ated classes offer methods to get a list of backwards
related entities. For each property p relating instances
of class A with class B, the class A has a method to
get, set, add and remove values as explained above.
The class B has a method Type[] getp_Inverse() to
get all instances of class A related to B via p.

Typing: The Java keyword instanceof cannot reflect schema
or type changes due to the static nature of the Java
language. As it is a keyword it can not even be over-
written with advanced method such as dynamic prox-
ies. Instead, the method Class[] getAllType() re-
turns a list of all RDF or OWL classes this instance of
currently type of.

Cardinality constrains: OWL cardinality constraints are
reflected in the API: add raises a CardinalityExcep-

tion if more elements than allowed are added. Sim-

2http://rdf2go.ontoware.org

ilarly, remove raises an exception if a min cardinal-
ity constrains would be violated. The cardinality con-
straints are modelled statically in the generate code
and do not reflect schema changes. This allows to gen-
erate methods that raise no exceptions for properties
without constraints. Such methods are easier to use
for developers.

Triple Store Independent. All generated APIs access RDF
models only through RDF2Go, thus the generated API
can be ported without changes to another triple store.

2.2 Code Generator Features
RDFReactor translates an ontology into a number of domain-

specific classes, which are explained in the previous Sections.
In this Section, we explain features of the code generator.

The developer creates or, preferably, reuses an RDF Schema
or OWL ontology as the backbone of the application. We
map ontology classes to domain-specific Java classes and re-
lations to properties, as explained in Sec. 2.1 and Sec. 3.
The code generator employs a number of features to help
an ordinary Java developer to become a semantic web de-
veloper (without actually having her to explain anything
beyond URIs in most cases):

• The Java classes and methods are in most cases named
according to usual Java coding conventions, even if no
labels are present in the ontology.

• RDFReactor works both with RDF Schemas and OWL
ontologies, respecting the ontology semantics (i. e. rea-
soning is used).

• After code generation, the API is ready to use. It’s
fully implemented and documented (JavaDoc).

• Multiple inheritance is resolved, a subclass tree is ex-
tracted to produce more readable code.

• Multiple domains and ranges are handled in an appro-
priate, type-safe manner.

• Changes to the generated source code are easy: Most
methods are implemented with a single line of code.
If frequent schema changes are expected, customized
subclasses should be used, so that changes don’t get
lost when the code generation is triggered again.

• Cardinality constrains are reflected in the API and
checked at runtime.

• The generated source code style is easy to change, as
it is generated with a template language.

In the next Section we explain how these features were de-
signed.

3. RUNTIME DESIGN
A key of the runtime design is a subclass hierarchy mod-

elling ontological layering in Java. The lowest layer mediates
between RDF’s graph model and object-oriented concepts.
We now explain the layering in detail:

http://rdf2go.ontoware.org

3.1 OO-Graph mapping layer
This layer contains hand-written methods to translate from

object-oriented method calls into triple-centric methods.
ReactorBase is the key to understand RDFReactor con-

cepts. It acts as a generic RDF resource, without any RDF
or RDFS semantics beyond the triple model. Each gener-
ated Java class directly or indirectly inherits from Reactor-
BaseImpl. Each ReactorBaseImpl instance knows it’s URI
(or blank node) and the RDFS Class it represents in the API.
Java objects are converted to the correct RDF types (e. g.
URI, xsd:int, . . .). Multiple ReactorBase instances looking
at the same resource can have different RDFS Classes, of
course, allowing for different perspectives on the same re-
source.

ReactorBase also implements a Map<URI, Object> inter-
face, allowing all RDFReactor instances to be used addi-
tionally in this generic fashion.

3.2 Ontology language layer
On this and lower layers, URIs have semantics. In our

case, RDF, RDFS, OWL and XSD are considered. Classes
like Resource and Class offer methods to access typical RDF(S)
properties such as labels (rdfs:label), comments (rdfs:comment),
types (rdf:type) and subclasses (rdfs:subClassOf). These
classes have been generated by applying the Code Generator
to the RDF Schema definitions of RDFS and OWL. In fact,
the auto-generated methods for the property type in the class
Resource are used as a substitute to Java’s instanceof, as
explained above.

Note how RDFReactor can operate on RDFS’s class and
property structures without running into any meta-modelling
issues. This simply due to the fact that all RDFS and OWL
semantics are handled in the underlying store.

3.3 Domain layer
This layer contains the code generated from a particular

RDFS or OWL ontology, e. g. Person or Image. They in-
herit from the class Class of the layer above.

In order to illustrate the layered design, we give now some
examples. We could use the ReactorBase implementation
directly and invoke it as follows:

1: URI FoafPhone = new URI(
"http://xmlns.com/foaf/0.1/phone");

2: URI FoafKnows = new URI(
"http://xmlns.com/foaf/0.1/knows");

3: ReactorBase heiko =
new ReactorBaseImpl("urn://heiko");

4: ReactorBase max =
new ReactorBaseImpl("urn://max");

5: heiko.add(FoafPhone, 123);
6: heiko.add(FoafKnows, max);

7: int i = (int) heiko.get(
FoafPhone, Integer.class);

8: Person[] heikosFriends =
(Person[]) heiko.getAll(
FoafKnows, Person.class);

The lines 5 and 6 immediately results in the triples {
<urn://heiko> foaf:phone "123"(xsd:int)} and { <urn://heiko>
foaf:knows <urn://max>} to be added to the model. This
is nice, but RDFReactor can do better by generating type-
safe domain-specific classes (which is assumed in line 8).
Let’s assume we generated a class Person from a FOAF-like
ontology [2]. It will look as follows:

class Person extends ReactorBaseImpl

properties
JPropertyJClass

JModel JMapped
name : String
mappedTo: URI
comment : StringJPackage

Name : String

inverse propertiessuperclasses

types

inverse

maxCard : int
minCard : int

root

*

*

*
*

*
*

Figure 2: JModel - the internal ontology model

public void addPhone(int value) {
add(FoafPhone, value);

}

/**
* @throws RDFDataException
* if multiple values found
*/
public int getPhone()
throws RDFDataException
return (int) get(FoafPhone);

}

public void addKnows(Person p) {
add(FoafKnows, p);

}

public Person[] getAllKnows() {
return (Person[]) getAll(
FoafKnows, Person.class);

}

As you can see, the domain specific classes are merely a cus-
tomising ReactorBaseImpl by hiding the type conversions.
This reflects well the strategy employed in the design of RD-
FReactor: We separate the concern of graph-OO-mapping
(ReactorBase, Bridge) from the concern of mapping loosely-
typed-RDFS to strictly-typed Java (generated code). The
domain-specific class can be used by ordinary Java develop-
ers without any knowledge about RDF as follows:

Person p = new Person("urn://heiko");
p.setAge(29);
int i = p.getAge();
Person[] heikosFriends =
heiko.getAllKnows();

We currently have support for the following datatypes as
values in domain specific methods (get, set, . . .): all Reac-
torBase instances, URI, URL, String, DatatypeLiteral, Lan-
guageTagLiteral. Additionally with correct XSD mapping:
Integer, Long.

4. CODE GENERATOR DESIGN
First, we translate the ontology into an internal model

(JModel). The internal model (c. f. Fig. 2) looks as follows:

JModel models a set of JPackages. It is mapped to an
RDF model.

JPackage models a package in Java, e. g.
”org.ontoware.rdfreactor.foaf´´. Modelling this explic-
itly allows to map different RDF namespaces to differ-
ent Java packages. A JPackage has a name and a list
of classes.

JClass has a name (e. g. ”Person´´), a URI it is mapped
to, a comment, a list of properties, a list of inverse
properties and a list of superclasses.

JProperty has a name (e. g. ”phone´´), a URI it is mapped
to, a comment, a list of types (JClasses), a minimum
and maximum cardinality and an inverse JProperty.

The JModel is very expressive and allows many things that
are illegal in Java, e. g. class cycles, multiple inheritance and
properties with no type. Algorithms to make the JModel
stricter are successively applied, allowing for reuse regardless
of source ontology language. Finally, the JModel is strict
enough to generate source code with the help of a template
processor. In the remainder of this Section we explain the
code generation process in detail. In the future, we consider
replacing the JModel with the Ecore framework from Eclipse
or other works based on the Ontology Definition Metamodel
[3].

Load built-ins. We initialise a JModel with the built-in
mappings of URIs to the Java classes of the schema
layer (c. f. Sec. 3). Of course, the default model is
different for RDFS and OWL. A new JPackage for
the API to be generated is created and added to the
JModel.

Inferencing. RDFS and OWL inferencing is applied to the
source ontology. All handling of ontology language se-
mantics is thus delegated to existing implementations.

Inspect Classes. For each ontology class oc, we distin-
guish three cases. First, if it is an OWL restriction and
thus not a real class: ignore it. Second, if the JModel
already contains a JClass mapped to the URI of oc:
ignore it as well. Otherwise we add a new JClass to
the JPackage. In order to find a legal Java class name,
a number of little things has to be done, see Sec. 4.1.

If the ontology class has an rdfs:comment it is copied
over in the JModel. Later is is integrated with the
auto-generated JavaDoc of the class.

Multiple Inheritance. Inheritance is tackled in two steps:
First, each superclass relation in the ontology is mapped
to a superclass relation in the JModel. Second, the
inheritance hierarchy is flattened, to remove multiple
inheritance, as described in Sec. 4.2.

Inspect Properties. For each property op in the ontology:
In the JModel, we look up the JClasses mapped to the
IDs (URI or blank node) of op’s domains. For each
domain d we generate a JProperty jp and attach it
to the respective JClass. The JProperty is named and
commented with the same strategy as classes (c. f. Sec.
4.1).

Then, for each range relation of the property op, we
add the corresponding JClass as a type of the property
jp. Multiple types for a property are handled in later
steps of the code generation.

Inverse Properties. For each JProperty jp with domain
d in the JModel, we add inverse properties: For each
JClass r in the range of jp we add an inverse property
’jp Inverse’ to r with the range d.

Source Code Generation. Finally the JModel is suitable
for a template-based code generation. Emitting source
code with a template language allows better control
over the generated syntax, especially indentation. We
initialise a Velocity3 template and use it to generate
the source code of a Java class for each JClass in the
JModel. The template has about 300 lines of codes
and is described in detail in Sec. 4.3.

The overall process of code generation can be summarised as
transformation from source ontology language into an inter-
nal representation (JModel), stepwise simplification of the
internal model until a template-based code generation ap-
proach can emit the final source code. In the remainder of
this Section we explain in detail issues regarding naming,
multiple inheritance and the template.

4.1 Naming
In order to name a class or a property adequately, a num-

ber of strategies are used:
First, a raw name is created by looking at the rdfs:label

in the schema (e. g. ’IM-account’). If no label was found,
the part of the URI after the fragment identifier (’#’) is
used (e. g. ’imAccount’). If no such delimiter is present in
the URI, the part after the last slash (’/’) is used. This
name is then transformed into a legal Java identifier as fol-
lows: Spaces and underscore are removed. Then all non-
alphanumeric letters are converted into an underscore (e. g.
’IM account’). If the resulting name starts with a number,
the name is prefixed with ’a ’. Finally, the first letter is cap-
italised, to reflect common Java naming conventions (e. g.
’ImAccount’).

The resulting name is compared with a list of taken names,
to avoid name clashes. If such a conflict occurs, a longer
name is created from the URI. If the part before the last
number sign or slash is known, the correct namespace prefix
is used (e. g. ’foaf’, resulting in ’FoafImAccount’). Other-
wise the last part of the URI consisting only of letters is
used (e. g. from the URI ’http://xmlns.com/wordnet/1.6/’
the prefix ’wordnet’ would be extracted, as ’1.6’ is not con-
sisting only of letters, resulting in ’WordnetImAccount’). If
that name is also taken already in the schema at hand, a
fallback to transform the full URI into a legal Java identifier
is used. As it turns out, naming is less simple then one might
think. For properties, removing leading parts such as ’is ’,
’has ’, ’is ’, ’has ’ leads to methods names better reflecting
common Java API design.

4.2 Inheritance Flattening
For each class in the JModel the following cases have to

be considered:

• If the class has no superclass, the root class of the
JModel (either rdfs:Class or owl:Class) is set.

• Classes with exactly one superclass are left unchanged.

• If multiple superclasses are found, the superclass that
has itself most superclasses is used. Note that setting
the JModel root class for all classes as the superclass
would result in no loss of functionality in the generated
API. The whole point of modelling ontology subclass

3Jakarta Velocity, a template engine. See http://jakarta.
apache.org/velocity/

http://jakarta.apache.org/velocity/
http://jakarta.apache.org/velocity/

relations at least partially in Java is the desire to gen-
erate code that is simpler to change manually later on.
There are other options to extract a strict tree from
the inheritance graph in the ontology, though.

4.3 Template
The template has to take care of a number of things in

order to produce a good source code. In particular the tem-
plate generates the following:

Minimal Header. A package declaration, import statements
for basic RDF classes and conditional imports, e. g. for
exceptions. Only classes that are used are imported,
to avoid having IDEs such as Eclipse to bug the user
with warnings.

Binding. Each class is bound to an specific ontology class
with a URI constant.

Documentation. An overview comment that explains which
properties are handled in this class is also added to the
JavaDoc. Each class and method are also documented.

Constants. All URIs that are used in the body of the class
are defined as constants.

Constructors. A number of constructors allowing for in-
stances to be created from a URI, URL, blank node or
no identifier (a random URI will be used). Some pro-
tected constructors are also generated, to allow con-
structor delegation up to the top (ReactorBaseImpl).

Properties. For each property, methods are generated ac-
cording to cardinality constraints and number of given
ranges. If no cardinality constraints have been state
or the maximum cardinality is exactly 1, a get and set
methods are created. A remove method, encoding car-
dinality constraints in the implementation as needed
(e. g. ’remove(value, 3)’, it a minimum of three ele-
ments must be guarded), is generated. If the maximum
cardinality is greater than 1 or not set, add and getAll
methods are generated.

Multiple ranges result in multiple set or add meth-
ods with the same name but different types, exploiting
method overloading. For get or getAll methods, it is
not possible to have the same method with different re-
turn types. Thus we disambiguate method names with
a postfix of ’ asTYPE’ to indicate the desired return
type.

Lean code. All generated methods are implemented (typi-
cally in single line of code, thanks to the inheritance),
documented (in JavaDoc) and throw appropriate ex-
ceptions (as documented in the JavaDoc) if things go
wrong.

Queries. A method to return all instances of the generated
class for a given model.

Inverse Properties. For each inverse property of the class,
get and add methods.

4.4 Implementation Details
First we wrote the ReactorBaseImpl class and hand-coded

essential parts of the schema layer (c. f. Sec. 3). Then we
wrote the code generator, making use of the schema layer
classes (e. g. getLabel()). Then we ran the preliminary
code generator on the RDF Schema of RDF Schema to get
a better (more features, better documented) schema layer.
The new schema layer classes were then used to enhance the
code generator. This way of bootstrapping seems well suited
for other programming languages as well.

As a second remark, the current handling of primitive data
types works only thanks to the new feature autoboxing and -
unboxing introduced in Java 1.5. Autoboxing converts seam-
lessly from primitive types and their corresponding Classes,
e. g. int and Integer.class.

5. MODEL MANIPULATION DESIGN
In order to stay independent of a specific triple store and

be able to offer RDFReactor APIs on top of a number of
stores, we developed the abstraction layer RDF2Go. RDF2Go
is a simple wrapper over Java triple (and quad4) stores, sim-
ilar in spirit of Jakarta Commons Logging. It allows de-
velopers to un-tangle their semantic web applications from
a specific store and thus profit from using always the best
store (performance, features). Writing new adaptors is easy:
only few methods have to be implemented.

RDF2Go currently5 comes with adaptors for Jena 2.2,
Jena 2.3, Sesame 1, Sesame 2, YARS, NG4J and even an
experimental adaptor for the Java Content Repository API
(JSR170). The core features of RDF2Go are:

• add and remove triples with one-method-call, no costly
object creation involved

• query for triple patterns

• SPARQL (although not all stores support it)

• full support for quad stores

• built-in URIs for RDF, RDFS, XSD

• No support for parsing. Users should use the supplied
parser from the triple stores instead. We don’t re-
implement everything.

RDF2Go maps URIs to java.net.URI, blank nodes to org.-
ontoware.rdf2go.BlankNode, plain literals simply to java.-
lang.String, language tagged literals to org.ontoware.-
rdf2go.LanguageTagLiteral, and data-typed literals to org.-
ontoware.rdf2go.DatatypeLiteral. This allows to add state-
ments as simple as

// assume some URIs have been created
URI mike = new URI("urn://mike"); URI foafName = new
URI("http://foaf.com#name");

// add triple
model.addStatement(mike, foafName, "Mike Müller");

Internally, RDFReactor relies on Jena 2.3 (accessed through

RDF2Go) in the code generator (c.ḟ. Sec. 4.

4Quad stores store quads, not only triples. This is also
known as Named Graphs
5release downloads, including all libraries: http://
ontoware.org/frs/?group_id=37&release_id=173

http://ontoware.org/frs/?group_id=37&release_id=173
http://ontoware.org/frs/?group_id=37&release_id=173

There are other RDF triple abstraction layer approaches,
but to our knowledge none is as simplistic and comes with
such a large number of adapters. Related approaches to
RDF2Go are KPOntology 6, Trippi 7 and of course the Mel-
nik API 8.

6. RELATED WORK
There have been several projects like RDFReactor, that

attempted to map RDFS to Java. The predecessor of RD-
FReactor was OntoJava [4] from AIFB. OntoJava was an
early approach and lacks basic features such as multiple in-
heritance, RDF resources with more than one RDF literal
related to it or RDF properties with multiple domains.

Rdf2Java 9 overcomes the inability of RDF Schema to
express restrictions by using the Protégé [6] annotations.
RDF Schemas created with Protégé can therefore be used
to generated constrained Java classes. Rdf2Java generates
Java classes that act as a facade to a Jena model.

An approach to map OWL full to Java is described in
[5]. Here the multiple inheritance problem, which applies to
RDF Schema as well, is solved by using Java interfaces. In
Java, a class can have only one superclass, but may imple-
ment many interfaces. Unfortunately, the OWL type sys-
tem is only present in the form of raised exceptions, as all
properties are mapped to methods that get and set generic
non-type-safe Java.util.List methods.

Summary: The current mapping approaches create cus-
tom Java classes in source code. RDFReactor is not tied to
a particular triple store, allows for easy changes in the source
code via Velocity templates and handles inverse properties
in a unique way.

7. USAGE EXAMPLE
Then intended way of using RDFReactor involves two

parts: API building and API usage.
API building involves some choices by an RDF-aware

developer. First, an existing ontology is re-used and possibly
adapted, or a new ontology is designed. Second, the API is
generated by running RDFReactor on the ontology. Finally
the generated classes are bundled together with the RDF-
Reactor runtime, a triple store, and an RDF2Go adapter for
this store. The resulting package can be distributed.

API usage can be done by any Java programmer, with
little or no knowledge about RDF, ontologies or the Seman-
tic Web. The developer simply instantiates the generated
classes and uses them, e. g. for developing a graphical user
interface for a specific domain. All user interaction with the
final UI will result in correct RDF, without any extra effort
on the developer side. And this RDF is described by the
ontology, which has been used to generate the the API.

RDFReactor has been used in the open-source RDF-versioning
system SemVersion10. SemVersion in turn is used in the
MarcOnt project11. Most of the internal API has been gen-
erated from a custom RDF Schema. Some parts of RDF-
Reactor have been generated by generating APIs for RDF

6http://kpontology.isoco.com/download.html
7http://trippi.sourceforge.net/
8http://www-db.stanford.edu/~melnik/rdf/api.html
9http://rdf2Java.opendfki.de

10http://semversion.ontoware.org
11http://www.marcont.org

Schema and OWL. These APIs are now used by the Code
Generator.

In an ideal world, tools similar to RDFReactor, such as
ActiveRDF12 for Python, would exist for all major program-
ming languages and allow other developers to use the RDF
data in an effortless way.

8. CONCLUSION AND OUTLOOK
In this paper we have shown how a domain-centric, usable

Java API can be generated from an arbitrary RDF Schema.
Our implementation, RDFReactor, is due to it’s dynamic
nature always in-sync with the RDF data model. Each
class inherits from ReactorBase, which allows the developer
to manipulate arbitrary RDF properties directly (set(URI
prop, Object o). Thus we do not restrict the expressivity
of RDF in any way. Additionally, code generated by RDF-
Reactor is fully customisable, thus method names and URIs
can be changed easily.

In the future, we plan to add transaction support to RDF2Go
and RDFReactor. The handling of OWL will be enhanced.

We help to make the ontology reuse promise a reality by
enabling the average Java developer to consume and pro-
duce data conforming to existing ontologies through domain-
specific Java APIs. The main advantage of our approach is
that developers who use the generated API don’t have to
know RDF at all, but can make full advantage of its’ capa-
bilities. RDFReactor is downloadable (Open Source GNU
LGPL) at http://rdfreactor.ontoware.org.

Acknowledgements.This research was partially supported
by the European Commission under contract FP6-507482
(Knowledge Web)and FP6-027705 (Nepomuk). The expressed
content is the view of the authors but not necessarily the
view of the Knowledge Web Network of Excellence as a
whole. Many thanks to Andreas Eberhart, Daniel Oberle,
Sudhir Agarwal, Peter Haase, Heiko Haller and Reviewer-17.

9. REFERENCES
[1] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds,

A. Seaborne, and K. Wilkinson. Jena: implementing
the semantic web recommendations. In S. I. Feldman,
M. Uretsky, M. Najork, and C. E. Wills, editors,
WWW (Alternate Track Papers & Posters), pages
74–83. ACM, 2004.

[2] L. M. Dan Brickley. Foaf vocabulary specification, 04
2004.

[3] I. S. S. DSTC, Gentleware. Ontology definition
metamodel.

[4] A. Eberhart. Automatic generation of java/sql based
inference engines from rdf schema and ruleml. In
Lecture Notes in Computer Science, volume 2342, 01
2002.

[5] A. Kalyanpur, D. Pastor, S. Battle, and J. Padget.
Automatic mapping of owl ontologies into java. In
Proceedings of SEKE 2004, Banff, Canada, June 2004.

[6] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W.
Fergerson, and M. A. Musen. Creating semantic web
contents with protégé-2000. IEEE Intelligent Systems,
16(2):60–71, 2001.

12http://activerdf.org/

http://kpontology.isoco.com/download.html
http://trippi.sourceforge.net/
http://www-db.stanford.edu/~melnik/rdf/api.html
http://semversion.ontoware.org
http://www.marcont.org
http://rdfreactor.ontoware.org
http://activerdf.org/

	1 Introduction
	2 Overview
	2.1 Runtime Features
	2.2 Code Generator Features

	3 Runtime Design
	3.1 OO-Graph mapping layer
	3.2 Ontology language layer
	3.3 Domain layer

	4 Code Generator Design
	4.1 Naming
	4.2 Inheritance Flattening
	4.3 Template
	4.4 Implementation Details

	5 Model Manipulation Design
	6 Related Work
	7 Usage Example
	8 Conclusion and Outlook
	9 REFERENCES -9pt

