
A Semantic Web Content Model and Repository1

Max Völkel
(FZI Forschungszentrum Informatik Karlsruhe, Germany

voelkel@fzi.de)

Abstract: The semantic web extends the world wide web with the ability to precisely
describe meta-data of web resources and ontological concepts in a unified way. However,
their is currently no model that is capable of representing the actual content of web
resources together with their meta-data. In a similar way, there is a lack of tools for
management of actual web content and abstract concepts in a unified way.

This paper presents a human-browseable and human-editable semantic web content
model and an implementation of a semantic web content repository (swecr).

Key Words: metadata, semantic web, content management

Category: H.3.7, H.5.4

1 Motivation

The semantic web is currently evolving in two places: On the web and as desktop
[1] applications. The Resource Description Framework (RDF) is the basic rep-
resentation format for knowledge on the semantic web. It was originally defined
as a format to describe meta-data about resources on the web. The RDF model
and programming libraries that implement it offer good ways to manipulate the
meta-data of resources but lack ways to describe, access or change the content
of resources. In fact, the RDF model does not even have the notion of content
at all.

A second problem with RDF is its lack of authoring tools. Those can be
divided into generic RDF authoring tools, where the user can also define the
schema at runtime, and another class of tools that allow authoring only data
according to fixed schema. E. g. an address book editor which outputs its data
in a fixed RDF format.

The lack of generic authoring tools for RDF is likely due to the lack of some
constraints that would improve the usability. As an example, authoring tools
currently have to deal with RDF models that contain no labels, so items can
only be displayed as inconvenient URIs.

Popular content and structure editing tools such as mind-mapping tools or
outliners allow end-users to create complex models rather easily. However, they
lack the flexibility of RDF (arbitrary typed arcs in a graph). In many mind-
mapping tools the user may in fact edit only strict trees. Even concept mapping
1 Paper will be shortened to 8 pages

tools that go beyond this and allow full box-and-arrow modelling still lack the
smartness that ontological inferencing on top of RDF can provide. Other struc-
tured content management systems (CMS) face the same problems: Not enough
flexibility and not enough “smartness”.

Some approaches aim to bring RDF and content together for the benefit
of end-user modelling. Examples for such tools are iMapping [2], Conceptual
Data Structures (CDS) [3]. They face the problem of low or no tool support.
Currently there is neither a model that allow to refer to both meta-data (RDF)
and content (binary), nor a tool implementing such a model. A detailed analysis
of this situation can be found in Sec. 4.

The remainder of this paper presents the Semantic Web Content Model
(SWCM). First a definition of web content is given in Sec. 2. A number of
requirements for a SWCM are listed in Sec. 3. Sec. 4 compares related work
with our requirements. Section 5 presents a model that unifies RDF and content
access. In Sec. 6 an architecture and implementation for a semantic web content
repository (swecr) is shown. The paper concludes with Sec. 7.

2 Web Content

Typical content on the web changed in the last years. The web began with small
personal home pages and grew up with huge search and shopping portals. Since
2004, blogs and wikis brought a new kind of content to the web. This change
was perceived by some a such a drastic change that they considered it as a new
version of the web and called it “Web 2.0”.

Content in Web 2.0 is often more fine-grained than full web pages, hence the
term micro-content emerged for this emerging set of addressable content consist-
ing of tags (single terms), comments (often not more than a single paragraph),
blog posts (often about half a page), images (including meta-data and a title) or
video snippets. For most of these micro-content items, the author and the time
of creation or last change are automatically logged and used for searching and
browsing.

The actual content of a resource is usually addressable via an HTTP-accessible
URI (URL). HTTP is the widely deployed protocol for accessing a URI and
finding out the mime-type of a resource and to read and write binary content
streams. From these findings we define web content as a quadruple (binary
content, mime-type, time, author).

2.1 Structured Text

Many content formats of Web 2.0 re-invent parts of HTML. Wikis for example
allow users to create headlines, lists and some inline formatting. Most wikis
however do not allow for setting the font size or colour. Many blog engines allow

to use BB-code, which allows for bold, hyperlinks and few other formatting 2.
Coming from an analysis of wiki interchange problems, a wiki interchange format
was defined in [4]. For exchange of semantic web content one needs a a general
structured text interchange format (STIF) which allows only for structural and
logical markup, but no purely visual effects. STIF should work as an inline
format, which means it does not require a full XML document.

3 Requirements for a Semantic Web Content Model

Usually, content is stored for the purpose to be retrieved. The users are in fact
storing and retrieving symbolic, externalised knowledge cues (c. f. [5]), that is
symbols which remind a user about some knowledge.

There are several ways to retrieve content:

Content names allow a user to fetch a unit of information in O(1). This is
similar to know the URL of a certain web page.

Keyword search in the full text of the content. This method is easy to im-
plement, but has some disadvantages. Users must remember parts of the
content to be able to retrieve it. If they do, retrieval can be fast (O(1)) or
slow (O(n)), depending on the result set size, which is proportional to the
keyword occurrence frequency.

Folders , categories or collections describe ways to group content items to-
gether. As item sets often contain other such sets (as it is the case for e. g.
file systems or wiki categories), the content can be browsed in a tree. If the
user browses the tree from the root and knows at each browsing step which
direction to take, then item retrieval takes O(logn).

An list of all content is always the last escape. Here the user simply browses
through all items, which is O(n).

In reality, the methods outlined above will be used together, leading to more
complex retrieval cost functions. However, the importance of remembered key-
words or remembered names becomes obvious. Therefore, the management and
usage of names should be supported.

(R1) Granularity: First, a Semantic Web Content Model must allow to de-
scribe semantic web content, as defined in Sec. 2. Content granularity ranges
from single terms to full (hyper-)text or multimedia resources.

(R2) Expressivity: Second, it should be able to offer the same flexibility and
expressivity as RDF to describe and relate content resources.

2 http:// www.phpbb.com/community/faq.php?mode=bbcode

(R3) Usability: Third, it should be usable by end-users, hence some require-
ments are imposed for meta-data structures: All meta-data items should have
a meaningful human-readable representation.

(R4) Naming: In order to support intuitive access to items, human-readable
and -write-able names are needed. Naming is in fact a very important part of
information management. Wikis allow users to use easy-to-remember names
to quickly navigate or link to known pages. Human-usable naming is proba-
bly an overlooked area of content management. The semantic web is funda-
mentally built on URIs, which are unique names for resources. Unfortunately,
they are hard to read and use for humans. Human readable names will likely
to work only within a certain context.

(R5) Search: Any content model should allow to retrieve content conveniently.
Queries are usually convenient ways to retrieve a number of items fulfilling
certain criteria. A SWCM needs also the ability to query the content, prefer-
ably by building on existing query languages.

(R6) Compatibility: A clear path how to use the SWCM together with ex-
isting frameworks is desirable. Especially the re-use of existing background-
knowledge expressed in RDF should be possible together with SWCM.

(R7) Gradual Formalisation: The user needs a way to express content in an
informal way, e. g. as plain text, formatted text or box-and-arrow diagrams.
Then the user should be able to migrate the knowledge into more formal
structures, if desired [3].

(R8) Inverse relations: In order to allow browsing semantic links in a knowl-
edge model, links must be traversable in both directions. Therefore, it is
desirable that link types have labels for both directions, e. g. “works for” and
“employs”.

4 Related Work

A number of related content models exist. This section describes them briefly
and evaluates them with respect to the requirements.

REST [6] is the theoretical underpinning of the architectural style used for most
parts of the world wide web. REST describes a set of addressable resources
which are manipulated by sending representations to them.

There is no defined way to model relations between resources, although
REST defines“hypertext is the engine of application state”. The REST mod-
els fulfills requirement (1) and (6), but fails for all other requirements,

RDF was invented as a meta-data format and hence was never intended to
represent the actual content.

It fulfills requirements (2), (5) and (6). But RDF cannot represent large
binary resources (1), is in its generic form not human-usable (3), has no
concept for human usable names (4) or gradual formalisation (7). Inverse
relations are allowed (e. g. in OWL) but not mandatory (8). In fact, RDF can
be called data assembler language, that can represent almost everything but
lacks some higher-order features to make it appealing for direct interaction
with humans.

JCR [7] defines the Java Content Repository API (JCR), which has quickly
gained much industry attention. To date, there are at least four independent
implementations of this standard (Alfresco, Apache Jackrabbit, eXo, and
Jeiceira).

JCR handles granularity well, even a mix of large binaries and small single-
term words has reasonable performance (1). The expressivity of JCR is also
rather high, JCR has a concept of node typing and allows to add relations be-
tween nodes (2). However, JCR allows only XPath-style [8] queries and does
not allow for graph-like queries (as they are supported by e. g. SPARQL), so
(5) is not met. Requirements (3), (4), (7) and (8) are not met at all. (6) is
met rather well, as JCR allows to use the familiar query languages SQL and
XPath.

Subversion [9] is an open-source versioning system with a number of interesting
properties. Subversion can handle small text files or larger binaries, but single
terms are not in the focus. Therefore (1) is only partly met. Subversion allows
to attach key-value pairs to resources, but no relations to other resources, so
(2) also only partly met. Subversion repositories can be browsed as trees and
have meaningful names (3). There are even some best-practices for naming
resources in a Subversion repository3.

Subversion offers no search (5), and does not address (7) and (8).

The mismatch between RDF and content management systems (CMS) is the
subject of a number of blog and email postings. Mc Schraefel describes4 semantic
web content as a “note book + memex” [10].

The proposal for the Apogee project5 describes an Enterprise Content Man-
agement (ECM) built on top of Eclipse, a JCR store, and and RDF store among
other parts. The project seems to make slow progress, but has not articulated
yet a clear model fulfilling requirements (1) – (8).

3 http://svnbook.red-bean.com/en/1.0/ch05s04.html#svn-ch-5-sect-6.1
4 http://dig.csail.mit.edu/breadcrumbs/node/184
5 http://www.eclipse.org/proposals/apogee/

© 2007 Max Völkel, FZI
18

swecr.repository

Item

Model

Statement

Content

Relation

NameItem

sou
rce

tar
ge

t

inverse

0..
1

MimeType

URI

0..n

author

ChangeDate

Struktur Inhalt
Figure 1: Semantic Web Content Model

5 A Semantic Web Content Model (SWCM)

A semantic web content model (SWCM) consist of a set of items. An item is
a central concept which effectively bridges the RDF and the content world as
it is both addressable via a URI and can refer to content as defined in Sec. 2.
All other elements in SWCM are special kinds of items. Therefore all SWCM
entities are addressable and can refer to content.

A special kind of item is the NameItem. A NameItem has a content snippet
with the mime-type “text/plain”. As NameItems represent human-readable and
-write-able names, no two NameItems may have the same content within a single
SWCM.

A special kind of NameItem is the Relation. A relation is a NameItem, which
has always exactly one inverse relation defined. This makes the model much
easier to browse and visualise. E. g. in most semantic GUIs incoming links are
rendered different from outgoing links. Therefore it makes a difference for brows-
ing whether a user stated (“FZI”“employs”“Max”) or (“Max”“works for”“FZI”).
For this user, this is often an artificial distinction.

A Statement is also a kind of item, which makes it addressable and allows a
user to attach content to it. A statement represents an relation from one item
(the source) to another item (the target) and always has a relation type. In other
words, a statement is like a typed link. Different from RDF, SWCM statements
can be addressed themselves.

5.1 Comparing SWCM and RDF

SWCM has at least the same expressivity as RDF. Each RDF statement (s,p,o)
can be represented as two items (s and o) and a relation (p) with an inverse (-p).

However, SWCM has some featurs, that RDF has not: (1) All SWCM content
is addressable – this is not true for RDF literals. (2) SWCM statements are
addressable, too – RDF has only a rather unclear concept of reification. The
similarity between SWCM and RDF allows to convert RDF to SWCM (creating
new URIs for literals and lifting them to items). Later, SWCM models can be
re-exported as plain RDF, of course loosing e. g. relations between former literals.

5.2 Structured Text

This paper defines STIF (c. f. Sec. 2.1) as the following set of XHTML tags
which may occur in plain text according to HTML nesting rules: <h1 - h6> for
headlines, <p> and <hr> for content chunking, lists, tables, em, strong, code,
img with src, and a with href. And span and div for other groupings of test.
Finally, the ID attribute coming from XML can be used to give elements a local
identity.

Using local XML IDs one can address parts of an items content. This is
sometimes more convenient than having to split an item into three items (part
before annotated text, annotated text, part after annotated text). Therefore
SWCM infers from an element with an XML ID the existence of the annotated
item. As an example, if an item x contains text in STIF, and this text contains an
span-element with an XML ID of a and the content “z”, then SWCM infers the
existence of an SWCM item with the URI xa and the content “z”. Furthermore,
SWCM infers a triple x swcm:hasPart xa.

This content inferencing allows a softer migration from large to small items,
as it makes parts of items addressable at low costs (no need to split items into
smaller parts before parts can be annotated). This allows e. g. for semantic an-
notations on parts of a text.

6 A Semantic Web Content Repository

This section describes the architecture (core layer and repository layer) and the
implementation “swecr” of the SWCM.

6.1 Architecture

The semantic web content repository (swecr6) is implemented in two layers: The
core layer models the state and the repository layer offers an item-centric view
on the state.

The core layer consists of a simple binary store (BinStore), an RDF Named
Graph repository and a text index. Fig. 2 shows the architecture of the core
layer.
6 Available under BSD license from http://semweb4j.org/swecr

© 2007 Max Völkel, FZI
14

Binary
Store

RDF
ModelSet

SPARQL
Engine

Indexing
BinStore

Indexing
ModelSet

BinStore
Impl

TextIndex
Impl

ModelSet
Impl

Index
External
Sources

Binary
Analyser

Figure 2: Swecr core architecture

The BinStore allows to access content in a stream and random access fashion.
The BinStore interface also takes care of concurrency and allows either multiple
reads or single writes. Note that many existing binary storage APIs offer no
random access which makes it impossible to use such store for implementing
projects such as Semantic File Systems [11].

The RDF repository is modelled as an RDF2Go ModelSet. RDF2Go is an
abstraction layer over RDF triple- and quad stores which relives the programmer
from choosing a single RDF store for all times. Currently OpenRDFis used as
the underlying implementation.

In order to allow queries over the binary content and to speed up queries
on RDF literals, Apache Lucene7 is used as a full text index. The index stores
inverse mappings for (item URI, content) and (URI, property URI, RDF literal
content).

For indexing binary content, all binary content is indexed after it has been
written to the BinStore. In a similar fashion all RDF literals are indexed after
they have been written. The proxy pattern is used here to separate the API from
the indexing. Removed resources have to be reflected in the index as well.

SPARQL queries should allow queries which access both the RDF and the
fulltext index. Similar systems have been developed for Jena (LARQ 8) and
Sesame (LuceneSAIL 9) already. The general idea is to split the query in two
parts and execute them individually: One query part is delegated to the RDF
7 http://lucene.apache.org/
8 http://seaborne.blogspot.com/2006/11/larq-lucene-arq.html
9 http://gnowsis.opendfki.de/wiki/LuceneSail

store, the other part is delegated to the full-text index. Then a join is performed
by the item URIs. Depending on the result set size, other join strategies should
be favoured, i. e. first performing the full-text query and then binding the item
URI in the RDF query to the resulting URIs. We are currently implementing
this on top of RDF2Go to be independent of the triple store. Note that neither
LARQ nor LuceneSAIL currently provide any API for handling binary content.

The core layer has no other obligations than starting, stopping and running
the three core components: RDF store, text index and BinStore.

The repository layer has no persistent state on its own, instead all updates
and queries are delegated to the core layer. This simplifies debugging and will
make sharing of state easier.

The repository layer implements 1:1 the SWCM as outlined in Sec. 5. It allows
to create, delete and manipulate Items, NameItems, Relations and Statements.
Additionally, queries on models are provided.

The repository, however, maintains the runtime state of items. Each item can
be locked. After locking, the item cannot be edited by other users. Locks time
out automatically if they are now renewed by the requesting application. The
requesting application may read who is currently editing a resources to be able
to initiate communication processes. Such communication is outside the scope
of swecr.

6.2 Implementation

This section describes how SWCM structures are stored in RDF. Two RDF
models are used for each SWCM, one for the actual data as modelled explicitly
by the user (user model) and one for the resulting plain RDF statements that
can be used for queries and inferencing (index model).

Item An item with URI x is simply stored as
<x> a swcm:Item .

The optional content of the item is stored in the BinStore.

NameItem A NameItem with URI x and and the content (name) “My Thesis”
is represented in RDF as
<x> a swcm:NameItem; swcm:hasContent ‘‘My Thesis’’ .

That is, the content of NameItems is currently stored in RDF. In the future,
it might instead be stored in the BinStore - this matters only for performance,
ease of debugging and the implementation of the query engine.

Relation A relation p (e. g. “works for”) with its inverse q (e. g. “employs”) is
represented as
<p> a swcm:Relation; swcm:hasContent "works for"; swcm:hasInverse <q>.

<q> a swcm:Relation; swcm:hasContent "employs"; swcm:hasInverse <p>.

Statement A statement s from a to b with the relation p is represented as
<s> a swcm:Statement;

swcm:hasSource <a>; swcm:hasTarget ; swcm:hasRelation <p>.

For this statement, however, some data is written also to the RDF index
model: <a> <p> . and <p-inverse> <a> This means that we currently
materialise the inverse triples into the index model. In the future, a rule
engine or reasoner might be used instead.

7 Summary

This paper presented requirements for a semantic web content model. Existing
work does not address the uniform management of actual content together with
its meta-data. A unifying semantic web content model was presented as well as
an implementation of it.

As future work, a number of additional issues have to be solved:

Access Rights. Fine grained access rights management can become very com-
plex. If there are too many resources or rights to manage, the system becomes
unusable. I propose to manage access rights on the level of “spaces”. Each
space contains a number of items and a number of users. Each user has either
read-only or read- write rights. Note that the idea of spaces is almost a 1:1
mapping to Named Graphs[12].

Versioning. Two levels of data have to be considered: Item content and item
structures. For each items content, we plan to employ a strategy similar
to Subversion or DeltaV 10 where each version is internally managed as a
distinct resource. For models, it seems more plausible to store change logs,
where each change entry consists of a number of added and deleted triples.
We must of course also keep track of which user performed which change,
to be able to generate meaningful recent-changes-feeds from it. Swecr will
allow to restore and earlier versions. For the sake of simplicity, queries will
always be executed on the current (possibly restored) version.

Synchronisation. We plan to built a sync-server which allows users to share
an SWCM and read it off-line, too. To allow users also to model together
in near-real-time, we plan to use a dedicated synchronisation server – which
could be one of the peers participating in a shared modelling session. The
synchronisation receives update requests from clients which are handled on
a first- come first-serve basis. Once an update is accepted by the server, it
is re-issued as a change-feed to requesting clients. Hence, in an extreme case
the server needs not even to look into the contents of the change requests.

10 http://www.ietf.org/rfc/rfc3253.txt

Only the time-stamps matter. For the clients, updating the local models is
similar to reading an RSS feed.

References

1. Decker, S., Park, J., Quan, D., Sauermann, L., eds.: The Semantic Desktop – Next
Generation Information Management & Collaboration Infrastructure. In Decker,
S., Park, J., Quan, D., Sauermann, L., eds.: The Semantic Desktop – Next Gen-
eration Information Management & Collaboration Infrastructure, Galway, Ireland
(2005)

2. Haller, H., Völkel, M., Kugel, F.: imapping wiks - towards a graphical environment
for semantic knowledge management. In Schaffert, S., Völkel, M., Decker, S., eds.:
Proceedings of the First Workshop on Semantic Wikis – From Wiki To Semantics.
(2006)

3. Völkel, M., Haller, H.: Conceptual data structures (cds) – towards an ontology for
semi-formal articulation of personal knowledge. In: Proc. of the 14th International
Conference on Conceptual Structures 2006, Aalborg University - Denmark (2006)

4. Völkel, M., Oren, E.: Towards a wiki interchange format (wif). In Völkel, M.,
Schaffert, S., eds.: Proceedings of the First Workshop on Semantic Wikis – From
Wiki To Semantics. (2006)

5. Haller, H.: Mappingverfahren zur wissensorganisation (2003) http://
heikohaller.de/literatur/diplomarbeit/.

6. Fielding, R.T.: Architectural Styles and the Design of NetworkBased Software
Architectures. PhD thesis, U. Mass. (2000)

7. Nuescheler, D.: Content repository api for java technology specification. Technical
Report Java Specification Request 170, Day Management AG, Switzerland (2005)

8. Clark, J., DeRose, S.: Xml path language (xpath) version 1.0. Technical report,
W3C (1999)

9. Pilato, C.M., Collins-Sussman, B., Fitzpatrick, B.W.: Version Control with Sub-
version. O’Reilly Media, Inc (2004)

10. Bush, V.: As we may think. Atlantic Monthly 176 (1945) 101–108
11. Bloehdorn, S., Görlitz, O., Schenk, S., Völkel, M.: Tagfs - tag semantics for hierar-

chical file systems. In: Proceedings of the 6th International Conference on Knowl-
edge Management (I-KNOW 06), Graz, Austria, September 6-8, 2006. (2006)

12. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and
trust. Technical report, HP (2004)

