
Integrated Project

Priority 2.4.7

Semantic based knowledge systems

Conceptual Data Structures (CDS) Tools

Deliverable D1.2

Version 1.0

15.01.2008

Dissemination level: PP

Nature P

Due date 15.01.2008

Lead contractor FORSCHUNGSZENTRUM INFORMATIK

AN DER UNIVERSITÄT KARSRUHE

Start date of project 01.01.2006

Duration 36 months

Nepomuk 15.01.2008

Authors

Max Völkel, FZI
Heiko Haller, FZI
William Bolinder, KTH
Brian Davis, NUIG
Henrik Edlund, KTH
Kristina Groth, KTH
Rósa Gudjónsdóttir, KTH
Mikhail Kotelnikov, COG
Pär Lannerö, KTH
Sinna Lindquist, KTH
Mikhail Sogrin, IBM
Yngve Sundblad, KTH
Bosse Westerlund KTH

Mentors

Ansgar Bernardi, DFKI
Mehdi Jazayeri, USI

Project Co-ordinator

Dr. Ansgar Bernardi
German Research Center for Artificial Intelligence (DFKI) GmbH
Trippstadter Str. 122
67663 Kaiserslautern
Germany
E-Mail: bernardi@dfki.uni-kl.de, phone: +49 631 205 75 105

Partners

DEUTSCHES FORSCHUNGSZENTRUM F. KUENSTLICHE INTELLIGENZ GMBH
IBM IRELAND PRODUCT DISTRIBUTION LIMITED
SAP AG
HEWLETT PACKARD GALWAY LTD
THALES S.A.
PRC GROUP - THE MANAGEMENT HOUSE S.A.
EDGE-IT S.A.R.L
COGNIUM SYSTEMS S.A.
NATIONAL UNIVERSITY OF IRELAND, GALWAY
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
FORSCHUNGSZENTRUM INFORMATIK AN DER UNIVERSITAET KARLSRUHE
UNIVERSITAET HANNOVER
INSTITUTE OF COMMUNICATION AND COMPUTER SYSTEMS
KUNGLIGA TEKNISKA HOEGSKOLAN
UNIVERSITA DELLA SVIZZERA ITALIANA
IRION MANAGEMENT CONSULTING GMBH

Copyright: Nepomuk Consortium 2006

Copyright on template: Irion Management Consulting GmbH 2006

Deliverable 1.2 Version 1.0 ii

Nepomuk 15.01.2008

Versions

Version Date Reason

0.1 17.08.2007 Start of first draft by Max Völkel

0.2 15.11.2007 First draft by Max Völkel and Heiko Haller

0.3 07.01.2008 Second version presented to mentors

1.0 15.01.2008 Final version

Explanations of abbreviations on front page

Nature
R: Report
P: Prototype
R/P: Report and Prototype
O: Other

Dissemination level
PU: Public
PP: Restricted to other FP6 participants
RE: Restricted to specified group
CO: Confidential, only for Nepomuk partners

Deliverable 1.2 Version 1.0 iii

Nepomuk 15.01.2008

Executive Summary

In this deliverable we present the idea of Conceptual Data Structures (CDS), a
unifying data model for end-user semantic personal knowledge management. We
present concepts as well as a software framework.

We describe two main user interface prototypes based on the CDS framework and
their evaluations. First, the NEPOMUK hypertext knowledge workbench (HKW) is
described. Second we describe the visual knowledge workbench (VKW), consisting
of two parts: iMapping and QuiKey. iMapping is graphical UI concept for personal
knowledge mapping, QuiKey is a “visual command line” for knowledge articulation
and querying and browsing. All prototypes are based on the same CDS API and
are hence interoperable. The CDS API is integrated with the NEPOMUK RDF
repository. We describe the current and planned integration status.

Additionally, we describe some natural language processing tools and a WikiModel
parser framework developed in our workpackage and how they integrate with CDS.

Deliverable 1.2 Version 1.0 iv

Nepomuk 15.01.2008

Contents

1 Introduction. 1

2 Conceptual Data Structures (CDS) . 2

2.1 Personal Knowledge Management (PKM). 2

2.2 Requirements . 4

2.2.1 Relevant Categories . 4

2.2.2 Most Popular Instances for each Category 5

2.2.3 Analysis of Data Models and their Relation Types 6

2.3 Data Model Layer – Semantic Web Content Model (SWCM) 10

2.3.1 SWCM in a Nutshell . 10

2.3.2 Semantics . 10

2.4 CDS Ontology Layer . 12

2.4.1 A Subsumption Hierarchy Of Common Relations . . 12

2.4.2 Semantics . 14

2.5 Using CDS . 15

2.5.1 Evaluation wrt. Requirements . 15

2.6 Realisation . 21

3 Hypertext-based Knowledge Workbench (HKW) . 25

3.1 Design . 25

3.2 User Guide . 27

3.3 Realisation . 31

3.4 Evaluation . 31

3.4.1 Expert Evaluation – Method . 31

3.4.2 Expert Evaluation – Results . 32

3.4.3 End-User Feedback . 36

4 Visual Knowledge Workbench . 37

4.1 iMapping . 37

4.1.1 iMapping Design principles . 37

4.1.2 iMapping GUI . 40

4.1.3 iMapping data Model . 40

4.1.4 Implementation Status. 44

4.1.5 Expert Evaluation (Flash GUI Prototype) 45

4.1.6 End-User Evaluation (Java Prototype) 48

4.2 QuiKey. 49

4.2.1 Interaction . 49

4.2.2 Current State of Implementation / Future Work . . 50

4.2.3 Integration / Possible Applications of QuiKey 50

5 Natural Language Tools . 53

5.1 Text Miner and Semantic Analysis Component 53

5.1.1 Language Processing Support Services 55

5.1.2 Keyword Extraction . 55

5.1.3 Speech Act identification . 56

5.1.4 Text Analysis and CDS . 56

5.2 Semantic Authoring with SALT . 57

5.3 Human Language Technology(HLT) . 58

5.3.1 Ontology authoring using Controlled Natural Lan-
guage. 58

Deliverable 1.2 Version 1.0 v

Nepomuk 15.01.2008

5.3.2 Text generation of Ontologies . 58

6 CDS and Wikis . 60

6.1 WikiModel 2.0 . 60

6.1.1 Design . 60

6.1.2 Complete Syntax Description. 62

6.1.3 Evolution of WikiModel . 73

6.1.4 Using WikiModel . 73

6.2 Structured Text Interchange Format (STIF) 73

6.3 The Wiki Syntax for HKW.. 75

6.4 BounceIt: Semantic Publishing . 77

7 Summary and Outlook . 79

7.1 Outlook . 79

7.1.1 CDS . 79

7.1.2 HKW .. 80

7.1.3 Semantic Email and Blogging . 80

7.1.4 Semantically Annotated LaTeX (SALT) 81

References . 83

A Appendix: CDS Ontology . 87

Deliverable 1.2 Version 1.0 vi

Nepomuk 15.01.2008

1 Introduction

Everyday knowledge artefacts from scrap notes to books, from mind maps to web-
sites all use certain very common structures that can be summarised in a few very
general relation types between information elements. It is the core idea of the
CDS approach, to identify these“Conceptual Data Structures”found by analysis of
common knowledge media (Sec. 2.4. They are to serve as a guideline for knowl-
edge workbench tools as well as a common high-level vocabulary that bridges the
gap between informally structured personal notes and formal representations of
knowledge like ontologies.

In this document we describe CDS as a generic framework for the representation
and management of personal knowledge (Sec. 2). CDS offers a set of basic entities
and common relations which proved suitable to cover the characteristics of common
information tools and structures in every-day use. We describe the underlying data
model SWCM (Sec. 2.3) and its realisation on top of RDF (Sec. 2.6).

We developed and evaluated several prototypical user interfaces which support the
creation of and interaction with CDS, representing knowledge as a highly interre-
lated set of small items. They follow two different approaches: The Hypertext-
based Knowledge Workbench (Sec. 3) is inspired by the semantic wiki approach.
It is a web-interface to a CDS-Model, which can be seen as a semantic wiki with
very fine granularity. The Visual Knowledge Workbench (Sec. 4) mainly consists
of the iMapping client for visually authoring CDS models. It is inspired by visual
knowledge mapping techniques like mind-maps and targeted to allow intuitive au-
thoring of personal knowledge bases. The iMapping approach is based on design
principles derived from research in user interface-design and cognitive psychology.
We have so far created and evaluated two early prototypes of the iMapping client
(Sections 4.1.5 and 4.1.6). The lessons learnt hereby have led to the design of the
currently developed full iMapping prototype described in 4.1. It is complemented
by the QuiKey tool, a kind of smart semantic command-line that focuses on highest
interaction efficiency to browse, query and author CDS Models.

Apart from explicitly entering all formal structures manually, Natural Language
Processing (NLP) can be used on plain text like wiki pages, e-mails or external
content to extract structures and statements from or to propose related items and
keywords. We describe some of the NLP tools developed in WP1000 and how they
integrate with CDS in Sec. 5.

Finally, we describe how CDS relates to semantic wikis in a twofold way: by orig-
inating from a semantic wiki approach and by how a wiki-like syntax can be used
to formulate CDS.

Deliverable 1.2 Version 1.0 1

Nepomuk 15.01.2008

2 Conceptual Data Structures (CDS)

In brief, Conceptual Data Structures (CDS) are a lean model suitable for represent-
ing and using personal knowledge in various degrees of formalisation in a uniform
fashion, allowing step-wise formalisation.

CDS consists of two layers: A data model layer (called SWCM) and an ontology
layer (called CDS ontology). In the remainder of this section we present these two
layers, the rationale for the ontology layer and the realisation of a CDS API. The
technical details of SWCM have been presented at I-Semantics in Völkel (2007).
The core ideas of CDS have been presented in Völkel, Haller & Abecker (2007)
and Völkel & Haller (2006).

As a research topic, CDS tackles Personal Knowledge Management (PKM), which
we introduce now briefly.

2.1 Personal Knowledge Management (PKM)

In brief, PKM can be seen as the Knowledge Management (KM) perspective on
Personal Information Management (PIM) or the personal perspective on KM.

Knowledge Management (KM) In 2000, the European Commission issued the
Lisbon Strategy1 to stimulate economic growth. The first one of three pillars is

preparing the ground for the transition to a competitive, dynamic,
knowledge-based economy. Emphasis is placed on the need to adapt
constantly to changes in the information society and to boost research
and development.

As our society becomes more knowledge-intensive future progress depends on effi-
cient and effective ways to automate knowledge processing.

Probst, Raub & Romhardt (2006) defines KM with six core and two control pro-
cesses: (1) identification, (2) acquisition, (3) development, (4) sharing, (5) appli-
cation, and (6) storage of knowledge . The control processes are knowledge goal
definition and evaluation of goal achievement.

Personal Information Management (PIM) PIM usually means managing con-
tact information, appointments, to-do items and notes. In fact, CDS grew out
of frustration encountered with the existing PIM tool-scape and the inability to
relate, link and describe PIM items. For example, one can currently not even relate
a number of contacts, appointments and tasks to a project. In particular, plain
text notes are in most PIM tools merely an unstructured, unrelated set of memo
items.

The basic processes in PIM have been identified (Jones & Bruce 2005) as: (1) keep-
ing; (2) finding/re-finding and (3) meta-activities like mapping between information
and need, maintenance and organisation .

Jones, Bruce & Dumais (2001) introduces the problem of “keeping found things
found”which reports on the tension between knowing something and merely storing
something.

Another core problem of PIM could be paraphrased as “keep found things accessi-
ble”. Marshall (2007) describes how hard it is to keep just all emails over a time
span of five years.

Personal Knowledge Management (PKM) In 1958, Peter F. Drucker (Drucker
1985) was among the first to use the term knowledge worker for someone who

1http://europa.eu/scadplus/glossary/lisbon_strategy_en.htm

Deliverable 1.2 Version 1.0 2

http://europa.eu/scadplus/glossary/lisbon_strategy_en.htm

Nepomuk 15.01.2008

works primarily with information or one who develops and uses knowledge in the
workplace.

The most important contribution of management in the 20th century
was to increase manual worker productivity fifty-fold. The most im-
portant contribution of management in the 21st century will be to
increase knowledge worker productivity – hopefully by the same per-
centage. [. . .] The methods, however, are totally different from those
that increased the productivity of manual workers.

Management of personal information and personal knowledge becomes more im-
portant as more people work as knowledge workers, where their capital is their
knowledge.

The term personal knowledge has also been used in Polanyi (1958), reprinted in
Polanyi (1998). Frand & Hixon (1999) was among the first to use the term PKM
in an academic context, followed by Avery, Brooks, Brown, Dorsey & O’Conner
(2001), Mitchell (2005).

North (2007) defines knowledge work as“work based on knowledge with an imma-
terial result; value creation is based on processing, generating and communicating
knowledge.2” According to North (2007), core value creation processes in knowl-
edge work are (1) searching, analysing, structuring, and reflecting; (2) planning,
strategy development, and organisation; (3) learning; (4) communication and doc-
umentation; (5) combination, reconfiguration, designing, and synthesizing.

CDS help mainly with step (1).

Conceptual Data Structures (CDS) CDS are a framework for PKM. In par-
ticular, they can be seen as a building block for semantic personal knowledge
management (SPKM) tools. SPKM (Oren, Völkel, Breslin & Decker 2006) is
PKM supported by semantic technologies.

CDS

Degree of Formal Expressivity

D
eg

re
e

of
 S

tr
uc

tu
re RDF

Annotated
Documents

XML

Free Text
Tagging

Wiki Pages

Formal
OntologyWeb Pages

Email

formal knowledge

structured knowledge

unstructured knowledge

uniform entry and access

Figure 1: CDS unifies different levels of formality

PKM requires the uniform management of unstructured, structured and formal
knowledge We assume that a typical user has the majority of the content in un-
structured form, some content will be a least structured and only few content will
be fully formalised, as depicted in Fig. 1, right side. We expect this distribution
simply for cost-benefit-reasons: It would be too costly to structure or formalise
all content. On the other hand, formalising some content lets the user profit e. g.
from inferred content types. So when content is typed with “Researcher”, a search
for “Person” would also return it – if the relation between researcher and person
has been formally defined as cds:hasSubType.

One can distinguish between domain-specific data models such as the data model
of e. g. Microsoft Outlook, which limits the user to speak about persons and
their addresses. There is neither a way to state the relation to other persons, nor
to represent music collections or relations from persons to other objects. This is

2translation by V̈ı¿ 1
2

lkel

Deliverable 1.2 Version 1.0 3

Nepomuk 15.01.2008

not only a limit of PIM-tools but of any domain-specific tool: They support data
modelling in a given domain well but do not allow to extend the model or link
to other objects in other data models. Domain-free data models such as the file
system or the model behind mind map applications allow to model any domain –
but not in a structured way. It is, e. g. not possible to export a set of persons
created in e. g. a Mind Mapping application to an address book application. CDS
is intended to unify popular domain-free data models and allow at the same time
to represent structured, domain-specific data in such a way that domain-specific
semantics can be used for inference, search and export.

Wikis and concept maps are two examples of popular, domain-free tools. CDS
is based on concepts from wikis (e g. easy editing and browsing), concept maps
(e. g. typed links) and semantic web technologies (e. g. formal statements, globally
addressable entities). Wikis offer better linking abilities but come at the cost of
not being able to represent specific types of items, such as appointment or contact
data. Semantic wikis meet both requirements but are still to cumbersome to use,
i. e. it is hard to get an overview of the emerging structure and refactoring is very
costly.

CDS is fusing the two concepts (informal knowledge tools and formal ontologies)
and shifting the focus from documents to knowledge models. The goal of CDS is
to handle a mix of knowledge in different degrees of formality (c.,f. Fig. 1, left
side) and allow stepwise migration from less structure to more structure and more
formality.

2.2 Requirements

CDS was not derived directly from cognitive or psychological works. Instead, an
indirect approach was chosen in which existing user interfaces, data structures, and
document models have been analysed.

The data sources are selected to represent structures which humans are used to use.
This deliverable tries not to model how humans think or which structures would
cognitively be the best choice. The approach is instead to consolidate existing
structures under the assumption that those have been “proven” to work. A system
using a model resembling existing structures should at least be easy to get used to.

The steps undertaken to arrive at the CDS are: (a) select a number of categories
(Sec. 2.2.1), (b) in each category choose the most popular instances (Sec. 2.2.2),
(c) analyse data model structures and features (Sec. 2.2.3), (d) find common
relations and create a subsumption hierarchy of relations (Sec. 2.4.1).

We found some structures to be inherent to most knowledge artefacts ranging from
vague paper notes to highly structured documents. The next sections present the
analysis steps in depth.

2.2.1 Relevant Categories

What approaches are used in practice to organise information and knowledge?
What approaches deal with the representation of vague knowledge, allow stepwise
formalisation or expose a modelling language to and end-user? A comprehensive list
is hard to define precisely, yet we believe the following category list is broad enough,
to cover all relevant (vague knowledge, stepwise formalisation, exposing modelling
language) approaches used in practice to organise information and knowledge:

• note-taking,

• documents,

• hypertext

Deliverable 1.2 Version 1.0 4

Nepomuk 15.01.2008

• desktop information management tools,

• data structures in programming languages

• data exchange formats and content languages

• creativity tools,

• more advanced PKM tools

• web sites for collaborative information organisation

• knowledge representation languages

• argumentation tools

2.2.2 Most Popular Instances for each Category

In this section we select the most popular or otherwise relevant approaches of each
category.

Note-Taking Popular examples of notes on paper are to-do lists, shopping lists,
diaries, and lab books.

Documents Documents exist on paper as well as in electronic form. The concep-
tual model behind them is the same in both cases.

Hypertext By far the most prominent example of hypertext in use is the World
Wide Web. Before the broad use of WWW there were a number of more
sophisticated hypertext systems that might be harder to deploy on a global
scale but which might also contain a number of interesting concepts for
PKM. Therefore this deliverable looks also into the Xanadu data model.

Desktop Information Management Tools The most popular tool for desktop infor-
mation management is probably the Microsoft Windows File Explorer. Similar
file browsers exists for less popular operating systems.

Implicitly the structure of the file system is exposed via these tools.

Data Structures in Programming Languages A popular all-purpose programming
language is Java, hence we look into the Java Collection Framework, which
is the foundation for managing collections of programming objects. Addi-
tionally, we look into Python, a scripting language with dynamic typing, and
its built-in handling of data structures. The assumption is that structures
that are deeply built into a programming language worked well in the past
to moderate between humans and computers.

Data Exchange Formats and Content Languages The structures used in data ex-
change languages must work for all use cases of that data format. Many
parts in a data format vary, but some structures cannot be changed. This
deliverable analyses theses built-in structures. In particular, XML and RDF
are analysed.

Due to the high popularity of the web, the structures built into HTML are
also worth looking into.

Creativity Tools Popular creativity tools are mind-maps and concept maps. Both
are popular graphical approaches for structuring information and helping the
user to get an overview. Mind maps can also be used to present information
to others.

The most popular mind mapping tool is Mind Manager from MindJet. For
concept maps, the most popular tool is the CMap Tools suite, which recently
became a commercial product.

Deliverable 1.2 Version 1.0 5

Nepomuk 15.01.2008

More Advanced PKM Tools Research prototypes for more advanced PIM and PKM
systems exist. Among the more popular ones are Haystack Quan, Huynh &
Karger (2003) and Chandler 3.

Web Sites For Collaborative Information Organisation With the advent of “Web
2.0”, some web site dedicated to collaborative information management be-
came popular. Among these, del.icio.us, for organising bookmarks and flickr,
for organising pictures have been chosen for further analysis. Both have been
bought by Yahoo.

Knowledge Representation Languages The personal knowledge model is intended
to represent formal knowledge. Therefore an investigation of existing knowl-
edge representation languages is useful̈ı¿ 1

2 .

This deliverable looks into OWL – RDF is handled already as a data exchange
format and Cyc – because the Cyc system has over 15,000 different types of
links. Furthermore, this deliverable analyses RDFS, Topic Maps, Conceptual
Graphs and SKOS.

Argumentation Tools Argumentation is used to achieve a consensus among di-
verging opinions, e. g. in court or expert discussions. Established forms of
argumentation are pro and contra arguments, based on verifiable evidence. A
formalisation of the basic structures has been done by Kunz & Rittel (1970)
as IBIS, issue-based information systems.

2.2.3 Analysis of Data Models and their Relation Types

In this section we look at popular tools within each category and distill the essentials
of their data model concepts.

Note-Taking People tend to use their own notation in paper notes.

There are very few published studies on the structure of personal notes. A study
by Dienel (2006) examines personal note books used by engineer around 1850 and
later. The study concludes that typical entry types were ideas, projects, addresses,
to-do lists, meeting minutes, data from measurements, and appointments. Most
engineers used one or two diaries at the same time, one for factual knowledge
and the other more for process knowledge. The study also remarks the prominent
use of different colors and carefully added table of contents. The artefacts in the
notebooks are either text snippets belonging to one of the given types, or drawings
or tables.

Features of paper-based note books which are requirements for CDS:

• Do not restrict the user to a domain. (7→ Req. 1)

• Let the user work on the same knowledge model for several years without
loosing structure (7→ Req. 2)

• Can use text and images (7→ Req. 3)

Documents A document contains a number of knowledge items. This act of
“packaging”together a set of knowledge items influences the interpretation of each
item by the reader. A document is a knowledge artefact consisting of several layers.

A document has a visual structure, i. e. is not only a stream of sentences, but uses
type-setting, i.e. bold, italics, different font styles and size, and placement of fig-
ures. Instead of focusing on the visual properties of documents such as distribution
of content on printed pages, this deliverable looks at the logical structure encoded
by visual properties.

Features of information in a document are:
3http://www.osafoundation.org/

Deliverable 1.2 Version 1.0 6

http://www.osafoundation.org/

Nepomuk 15.01.2008

Reference-ability : Once a document is published, the reference can act as a
placeholder for the content expressed within. A reference to a document
can act as a meta-symbol on top of the symbols (information atoms) the
document contains. The usage of document references as symbols allows a
document to“participate”in conversations, which lead to scholastic methods
and modern academia. (7→ Req. 4)

Metadata : Each document is written by a number of authors for a certain audi-
ence with a certain goal. By sending this process metadata along with the
document the reader has the ability to put the document in context and in-
terpret it better. Such metadata is used by the reader as a frame of reference
for interpretation and for search. (7→ Req. 5)

Sequential Navigation : A document can typically be read from start to end by
navigating through all contained information items. This is a simple yet
effective strategy to scan completely over a body of information. However,
during document creation, the final order is most likely not yet defined.
Ordering a collection of ideas or text snippets into a coherent flow is one of
the main tasks of authoring (Esselborn-Krumbiegel 2002). (7→ Req. 6).

A user should be able to create order gradually, e. g. by stating order between
some sections, but not requiring a total ordering. (7→ Req. 7)

Logical structure : The visual structure is used to encode a logical structure con-
sisting of i.e. paragraphs, headlines, footnotes, citations, and title. The log-
ical structure makes it possible to reference smaller, meaningful parts within
a document, i.e. ”Sec. 4.2”. This logical structure most importantly consists
of a hierarchy (7→ Req. 8) of text parts such as book part, chapter, sec-
tion, sub-section, paragraphs, sub-paragraph and sentence. This hierarchy,
together with a linear order (Req. 6) creates a tree. The user can navi-
gate e. g. from section up to chapter, down to sub-section, forward to next
section, or backwards to previous section.

Argumentative structure : On top of the linear content, a document follows an
argumentative structure to convey its content to the reader. Argumentative
structures appear on all scales. A typical structure is the ”Introduction -
Related work - Contribution - Conclusion”-pattern of scientific articles. On
smaller scales, patterns like ”claim-proof”and ”question-answer”are used. (7→
Req. 9)

Content semantics : Documents content’s mean something. Building upon logical
and argumentative structure, the author encodes statements about a domain
within the content. CDS should allow to represent a documents semantic
content in a formal way. (7→ Req. 10)

Documents are an established form of communication, carrying a lot of structure
to be exploited.

Hypertext The main concept in hypertext and the WWW is the notion of a
hyper-link which moves the focus away from the document the user is looking at
towards another document. Hyperlinks in WWW are directed, have a single source
and a single target. (7→ Req. 11)

A central idea in another hypertext system called Xanadu is the notion of trans-
clusion, as defined in Nelson (1995):

The central idea has always been what I now call transclusion, or reuse
with original contexts available, through embedded shared instances
(rather than duplicate bytes).

Transclusion allows to use a piece of content inside many document. If the content
piece is changed, it changes in all documents that use it. (7→ Req. 12)

Deliverable 1.2 Version 1.0 7

Nepomuk 15.01.2008

Desktop Information Management Tools In 1981, the Xerox Star Worksta-
tion, one of the first personal computers, was released (Friedewald 2000). It pi-
oneered the WIMP-metaphor (window, icon, menu, pointing device) and placed
digital documents, represented as little icons, in the heart of the user interaction.
Files in the computer were modelled close to physical documents. Since then, doc-
uments remained the dominant paradigm for information exchange and archival.

The popular operating systems today (Windows, Mac OS, Linux) still follow the
WIMP-metaphor. All of them contain a desktop with icons and a file browser
(Windows: Explorer, Max OS: Finder, Linux: e. g. Konqueror). The file browser
basically shows a strict hierarchy of directory names and the files contained therein.
File and directory properties such as creation date, size and access rights are also
shown in this tool. Users can browse a tree (Req. 6, Req. 8) and thus narrow
down their search and discover related, yet unexpected items. It is important for a
user to be able to group seemingly unrelated content (7→ Req. 13) together so that
retrieval of one item triggers retrieving of the others, too (Jones, Phuwanartnurak,
Gill & Bruce 2005). It should be easy to place new items into a named container
(7→ Req. 14).

Data Structures In Programming Languages Popular programming languages
have built-in support for certain data structures, while others are built by composing
the simpler ones.

• Python has built-in support for arrays (lists), sets and maps (dictionary).

• Java has only native support for arrays. The included Java Collections Frame-
work adds support for sets, lists and maps.

The relation types needed to represent these data structures are:

Unordered collection Does not imply or require an order among items. This is the
same as Req. 13.

Lists Membership in a collection (Req. 13) plus a total order (Req. 6) among its
elements.

Maps A map is a collection of items which has for each item a defined correspond-
ing item. The functionality of a map can thus be realised via Req. 6 and
Req. 11.

Data Exchange Formats For data exchange, XML is probably one of the most
popular languages today. The data model used in XML is the so-called XML info-
set. This is a strict tree of elements. Elements may contain text and a number of
attribute-value pairs. Basically XML encodes a labelled tree with ordered children.

Representing XML requires hierarchical nesting of elements (Req. 8), unique names
for the elements and attributes (Req. 14), and modelling of attributes. An attribute
is basically a key-value-pair connected to an element. As an example, the image
element IMG of XHTML has an attribute SRC to state the source URL of an
image. The attribute can modelled as part-of the element, a case of hierarchical
nesting (Req. 8). Furthermore, the key of the attribute denotes the semantics of
the attribute. In fact, not the complete key-value-pair is part of the image, only
the URL value is. The key is only stating the role or type the value plays. More
formally, the semantics of

<element key="value"> ... </element>

can be modelled as three formal statements: (element, hasPart, x), (x, hasValue,
”value”), (x, hasType, key). As requirements we get the need for representing
part-whole-hierarchies (Req. 8) and for assigning types to items (7→ Req. 15).

A new data exchange language, the Resource Description Framework (RDF), is also
gaining popularity. The strengths of RDF are a well-defined process for merging

Deliverable 1.2 Version 1.0 8

Nepomuk 15.01.2008

several data sources and the ability to represent arbitrary graphs. Dealing with
RDF directly requires quite a technical mind set, e. g. thinking about the distinction
between literals, blank nodes and URIs. As requirements we get ability to represent
typed links between entities (7→ Req. 16).

Most aspects of (X)HTML have already been described in the general section on
documents and hypertext.

Creativity Tools Besides standard office document format like text document,
spreadsheet, presentation slides, and diagrams, mind maps are becoming a popular
format, too. Mind maps were invented by Buzan (1991) to help people learning
new material faster and better. As a computer application, mind maps are mostly
used to (re-)structure items (7→ Req. 17) or help in capturing ideas in discussions.

Conceptually, a mind map is a tree of nodes (Req. 8), centered around a central
root node. In many popular tools such as Mind Manager and FreeMind only the
nodes can carry labels, the arcs cannot.

In CMap Tools the user can label nodes and links. There is not a single central
node. The data model of CMap Tools is very similar to the SWCM model described
in Sec. 2.3, but CMap Tools lack semantics and queries.

More Advanced PKM Tools Existing prototypes for PKM tools such as MITs
Haystack (Adar, Karger & Stein 1999, Quan et al. 2003) allow the user to manage
a large set of information items in a homogenous way. A central idea in Haystack is
the notion of a collection, which may contain items of different kinds. CDS should
allow to group items in arbitrary collections. (Req. 13)

All items are rendered in a similar fashion. CDS tools should be able to render all
kinds of items. (7→ Req. 18)

Web Sites For Collaborative Information Organisation Many web sites allow
users to“tag”their content. Delicious4 assigns single-term keywords to bookmarks,
flickr 5 labels digital images. Both systems allow users to browse the implicitly
created sets of items which share a common tag. Many other popular web 2.0 site
for collaborative information organisation also offer tagging as a lightweight means
to structure information. Some systems even allow to add structure to the tags
themselves (e. g. Soboleo6 and Bibsonomy7).

The data model consists of items which can have zero, one or more tags. CDS
should allow to tag items. (7→ Req. 19) Similar to Bibsonomy, users should be
able to create structure between tags. (Req. 10)

Knowledge Representation Languages Existing knowledge representation lan-
guages are very general (RDF, RDFS, Topic Maps, OWL, Conceptual Graphs)
and feature few semantic relations suited to directly model and structure personal
knowledge.

Existing vocabularies and ontologies (SKOS8, IBIS Kunz & Rittel (1970)) are too
domain-specific (c. f. Req. 1) to model arbitrary personal knowledge.

RDFS does not distinguish between class and instance. Every resource can be used
as a type of another resource. OWL is stricter, and mandates a clear separation
of modelling layers. CDS should be able to assign types to items (Req. 15). CDS
should allow to do meta-modelling, i. e. assign types to types ((7→ Req. 20)).

Both RDFS and OWL have inheritance hierarchies of classes and properties. Both
have the notion od domains and ranges for properties; they are used in a reasoner to

4http://del.icio.us
5flickr.com
6soboleo.com
7bibsonomy.org
8http://www.w3.org/2004/02/skos/

Deliverable 1.2 Version 1.0 9

http://del.icio.us
flickr.com
soboleo.com
bibsonomy.org
http://www.w3.org/2004/02/skos/

Nepomuk 15.01.2008

infer types of instances on which theses properties are used. OWL offer a construct
to state equality between concepts, RDFS lacks such a construct.

2.3 Data Model Layer – Semantic Web Content Model (SWCM)

The Semantic Web Content Model (SWCM) is the data model of CDS. Although
SWCM has been inspired – among other things – from RDF, it follows completely
different goals. RDF is a rather technical data format for information integration
and data exchange. SWCM is a conceptual data model designed for end-users. As
an analogy, compare the technical level of the file system, which consists of nodes,
blocks, node tables and file allocation tables. From a users point of view, a file
system is a tree containing folders and files. As such, SWCM describes also some
user interface aspects, since SWCM can be used without the CDS ontology.

2.3.1 SWCM in a Nutshell

Semantic Web Content Model (SWCM) consists of five kinds of entities.

Model A knowledge model consists of Items.

Item Every entity in SWCM is an item. Each item has a unique URI which makes
it globally addressable. Additionally, each item may have content attached
to it. There is no content not attached to an item. Content may be textual
or binary. Binary content is defined as on the web, i. e. having an encod-
ing, mime-type and length in bytes. Textual content has by default UTF-8
encoding. Each Itembelongs to a model.

NameItem A NameItemis a special kind of item, with two restrictions on its con-
tent. First, a NameItemmay have only textual content. Second, this textual
content must be unique within a knowledge model. This naming concept
(inspired from wiki naming) allows to address items via human type-able
names. Note that SWCM does not mandate the name-content-pairs that
form a typical wiki page.

Relation A Relationis a special kind of NameItem. Relations can be used to state
statements, as explained in the next paragraph. In addition to a NameItem,
each Relationp has a mandatory inverse Relation −p. This allows to render
all statements of the form (s,p,o) additionally as (o,-p,s). This is very handy
for user interfaces which allow browsing of items.

Statement A Statementis always of the form (Item, Relation, Item). As a state-
ment is itself an Item, the user can annotate statements as well – a handy
feature e. g. for discussion systems.

2.3.2 Semantics

Similar to the RDFS semantics Hayes (2004), SWCM is used to assert facts about a
universe. Instead of repeating the RDFS specification, we highlight the differences.

Items Each item has a URI. Two items with the same URI are the same Item.

Statements In SWCM, Statements are Items themselves. As such, they are
addressable. From each Statement x we can assert the fact (x.source, x.relation,
x.target) in the universe. Note that the identity of the Statement does not influence
the asserted facts. It is possible that difference statements with the same URI assert

Deliverable 1.2 Version 1.0 10

Nepomuk 15.01.2008

the same facts. Each statement has always exactly one source item, one relation
and one target item. Therefore it is not possible that two different statements
(differing in source, relation and/or target) have the same URI.

NameItems SWCM has the consistency axiom that no two NameItems have
different URIs and the same content. Formally, for two NameItems a and b the
following holds:

a.content = b.content⇔ a = b (1)

There may be normal Items (those that are not NameItems) having the same
content as a NameItem or as another Item.

Inverse Relations Every Relationp has an inverse Relation−p. The inverse of
the inverse of a Relationp is p:

− (−p) = p (2)

For every Statement(s, p, o), the inverse Statement(o,−p, s) is inferred, where −p
is the inverse of p. That is:

∀s, p, o : (s, p, o) Z⇒ (o,−p, s) (3)

Comparing SWCM and RDF Although, technically, SWCM is implemented
using RDF, from a users point of view this does not matter. Many semantic
web applications hide the complexity of RDF completely – for a good reason.
Most users do not want to deal with URIs, blank nodes, literals, data-types for
literals, language tags for literals and other RDF subtleties such as the rdf:List
construct. Some early semantic web applications do show URIs to the end user –
such user interfaces are now considered immature and prototypical. The core idea
of SWCM is to expose the same expressivity to the user that RDF has, basically a
graph with typed links.

The expressivity of SWCM is comparable to RDF. Again, SWCM is not meant to
replace RDF. Instead, it is a data model for the end user, which is implemented
in RDF. It could also be implemented using other encodings besides that. Yet,
SWCM has a similar expressivity as RDF, therefore we now compare SWCM with
RDF.

SWCM is an extended subset of RDF. The following entities of RDF have been
removed:

Blank nodes: All entities in SWCM have a URI. This URI is never shown to the
user.

Data-typed Literals: All literals in SWCM are plain literals. SWCM is meant to
record personal thoughts, not to store technical data.

Language-tagged literals: SWCM is meant to be used by one person. There are
no multiple values in different languages.

Literals : SWCM has no “plain literals”. Instead, each item (identified by a URI)
has exactly one literal attached.

SWCM also extends RDF. The following features have been added, compared to
RDF:

Addressable Literals: The fundamental concept of SWCM is the Item. Each item
is first addressable via a URI and second it may contain zero or one content.
No content can appear outside of Items. Each piece of content is thus
addressable, which is used e. g. to record creation date and authorship of
each Item. RDF does not allow to address literals.

Deliverable 1.2 Version 1.0 11

Nepomuk 15.01.2008

Addressable Statements: As Statements in SWCM are special Items, all State-
ments also have a URI. Hence all SWCM Statements are addressable. In
RDF, statements are not directly addressable and reification and named
graphs do not solve this either, out of the box.

Inverse relations: RDF and RDFS do not define inverse relations. OWL does define
inverse relations, but they are not mandatory. In SWCM, inverse relations
are mandatory.

Name items: SWCM has the notion of NameItems, which allow the user to address
items via a memorable string. This was inspired by the usage of WikiWords
in wikis. NameItems are items where the content has naming characteristics.
RDF does not have a naming concept for humans.

2.4 CDS Ontology Layer

SWCM allows to represent knowledge in various degrees of formality. CDS extends
SWCM with an ontology of relations. CDS is represented in the SWCM data
model. A typical user is expected to use SWCM together with the CDS ontology.

CDS has the central concept of a relation hierarchy (the CDS ontology), which lets
the user orientate even in large knowledge models.

We found that there is a relatively small set of types of structural relations between
information items, which occur very often in all of the tools analysed in Sec. 2.2.
We grouped these relation types according to different dimensions that they de-
scribe. Finally the more specific ones of these relations were subsumed under the
more general ones depending on how generic they are. This hierarchy of relations
is the basis of the CDS ontology.

2.4.1 A Subsumption Hierarchy Of Common Relations

Based on the analysis of data models in Sec. 2.2.3 we distilled a small set of
relations sufficing to represent them. We arranged these relations in a subsumption
hierarchy, from general to specific.

The four core relation types are depicted in Fig. 2. Relations are listed with their
name and the name of their inverse relation. Fig. 3 shows the CDS relation hierar-
chy. The resulting ontology, expressed in RDF/N3 can be found in the appendix.
The complete CDS relation ontology is now discussed in detail.

context

detail

before after

target

source

annotation
member

annotation

Item

Figure 2: The four core CDS relations

Deliverable 1.2 Version 1.0 12

Nepomuk 15.01.2008

related to

links to
(is linked from)

similar to

annotates
(has annotation)

tag of
(tagged with)

comes before
(comes after)

has detail
(has context)

same as
alias for

(has alias)

has subtype
(is subtype of)

has part
(is part of)

has instance
(has type)

Figure 3: Relation Hierarchy in CDS

Related related/related is the most basic relation. Every item is related to
another item, if any kind of relation has been stated. All relations are sub-relations
of this relation by default.

Similar, Same, Alias and Replacement If one Item A is an alias of another
Item B, then all Statements about A are considered to be Statements about Item
B. If one Item is a replacement for another one, then an occurrence of A’s content
is replaced at edit-time with B’s content, e. g. when editing text.

Hyperlinks cds:hasTarget and its inverse cds:hasSource model generic,
directed linking. This can be found in WWW hyperlinks, references in documents,
or links in the file system. The semantics of a link are pretty generic: A link refers
to a target Item.

Order cds:hasAfter and its inverse cds:hasBefore model any kind of
ordering relation. It might be order in space, time or by other means, e.g. priority
or rank. Sequences such as arrays and lists are used in virtually any information
system.

has before/has after is a sub-relation of has target/has source.
Different from rdf:Lists, this allows to represent partial order or even cyclic order.
Such freedom is important to let a user experiment with different orders, e. g. for
his tasks.

Hierarchy cds:hasDetail and its inverse cds:hasContext represent any
kind of hierarchy and nesting. Hierarchies are very common information structures
present in documents, organisational charts, file systems, and user interfaces. This
relation models hierarchies in a generic way. Part-whole relations or type hierarchies
are considered special cases of this relation. cds:hasDetail is a sub-relation of
cds:hasTarget from which we can follow (due to inverse relation semantics)
that cds:hasContext is a sub-relation of cds:hasSource.

Annotation, Tagging and Typing cds:hasAnnotation and its inverse cds:has-
AnnotationMember models annotations of Items. An annotation is typically a
statement about an item-taking a meta perspective. This relation indicates a dif-
ference in the modelling layer. Annotating items covers everything from virtual

Deliverable 1.2 Version 1.0 13

Nepomuk 15.01.2008

sticky notes up to tagging and formal typing. cds:hasAnnotation is a sub-
relation of cds:hasTarget. cds:hasAnnotationMember is a sub-relation
of cds:hasSource.

Tagging Together with thy hype around “Web 2.0”, tagging became popular for
assigning easy-to-type keywords on items. CDS considers tagging as a special form
of annotation. Hence cds:hasTag is a sub-relation of cds:hasAnnotation.
cds:hasTagMemberis the inverse of cds:hasTag. cds:hasTagMember is
a sub-relation of cds:hasAnnotationMember.

As tags inherently have the characteristics of being a unique name, users in CDS
should tag with NameItems. As there are some approaches tagging e. g. images
with images 9, CDS does not restrict tagging to NameItems.

Typing The next formalisation step is possible by assigning types to Itemsby
referring to any NameItemwith the built-in relation cds:hasType.

Classifying an item with cds:hasType is modelled as a special case of tagging.
Tagging has no formal semantics, but types are inherited via the cds:hasSubTy-
pe-Relation-which is in turn a special form of cds:hasDetail. cds:hasTy-
peis a sub-relation of cds:hasTag. cds:hasTypehas the inverse cds:has-
Instance. cds:hasInstanceis a sub-relation of cds:hasTagMember. This
allows all types to be used as tags as well and allows applications using CDS but
not understanding formal types to give the user still some benefit of the formal
data.

2.4.2 Semantics

In this section we explain briefly the semantics of CDS. Besides the semantics listed
in this section, the other CDS ontology Relationshave no formal semantics besides
them being Relations in the sense of the SWCM model.

Subsumption (cds:hasSubRelation, cds:hasSubType) Types form a
subsumption hierarchy, exactly like in RDFS. A cycle in the subsumption graph de-
notes that all relations equal. Type subsumption in CDS is indicated by cds:has-
SubType and its inverse cds:hasSuperType.

Relations form a subsumption hierarchy, exactly like in RDFS. A cycle in the relation
subsumption graph denotes that all relations equal.

Together with inverse relations we get:

(s, p, o), (p, hasSubRelation, q)
(3) Z⇒ (o,−p, s)

Z⇒ (−p, hasSubRelation,−q)

In CDS, relation subsumption is bound to the built-in relation hasSubRelation
with its inverse relation hasSuperRelation.

Aliases (cds:hasAlias) The CDS Relation cds:hasAlias links a Name-
Item to another Item, acting as a shorthand for navigation and data entry. Given
an alias a pointing to an item i (a, hasAlias, i), a Statement about a implies the
same statement about i. Formally,

(a, hasAlias, i)(a, p, o) Z⇒ (i, p, o)
(a, hasAlias, i)(s, a, o) Z⇒ (s, i, o)
(a, hasAlias, i)(s, p, a) Z⇒ (s, p, i)

(4)

9See the ImageNotion project http://www.imagenotion.com/

Deliverable 1.2 Version 1.0 14

http://www.imagenotion.com/

Nepomuk 15.01.2008

Comparing CDS to RDF Schema and OWL CDS is intended to be used by
end-users, not for data exchange between machines. But as RDFS has been a
strong inspiration for the semantics of CDS, we present a brief comparison.

Class and Instance: CDS does not clearly distinguish between the two. Rather,
every item can be used as a type for another item. This is the same in
RDFS, but different from OWL.

Domain and Ranges: CDs has no notion of domains and ranges. Every relation
can be used with every kind of item.

Class hierarchies: CDS has a hasSubType relation, similar to RDFS’ subClass-
Of.

Property hierarchies: CDS has a hasSubRelation relation, similar to RDFS’ sub-
PropertyOf.

Same As: Different from RDFS, but more similar to OWL, CDS has several ways
to state similarity (has similar) or equality (same as).

2.5 Using CDS

Whereas the SWCM allows modelling content snippets (Items) and arbitrary rela-
tions between them, the CDS ontology defines a simple schema language to classify,
relate and describe relations. It is designed to allow for soft migration from unstruc-
tured to structured knowledge. The user is free to create any Relation or Item types
he needs. CDS only demands from the user to classify all Relations according to
the CDS ontology. This is not really a constraint, however, since unspecified Rela-
tions can safely be made a sub-Relation of the top-level Relation cds:related.
The CDS ontology is a taxonomy of Relations, each lower-level Relation implies
the higher-level Relations, just like in RDF Schema (RDFS). Every Item that has
any kind of Relation to any other node is at least cds:related.

The usual way to use CDS is: A user creates a number of text items, compara-
ble to brainstorming with sticky notes on a white-board. Then she groups these
snippets and connects them with arrows. Later she specifies these relationships by
labelling the arrows. After a while, she might see that some items share common
characteristics and assigns them to one or more types such as ”Person”, ”Idea” or
”Todo”. These types can be exploited for search, e. g. ”give me all Persons in
Karlsruhe”. Arcs are classified in a similar fashion and can be typed with Relations
such as ”knows” or ”part of”.

2.5.1 Evaluation wrt. Requirements

In this section, we give list how the requirements gathered in Sec. 2.2 are met.
First we look at requirements solved by the design of SWCM:

• Req. 1: SWCM is not limited to any domain. Users can create any number
and kind of Itemsand relation types as they need.

• Req. 4: Every item in SWCM has a URI, as such it is globally reference-able.

• Req. 3: SWCM items can also contain binary content with a given mime-
type. This enables them to contain images as well.

• Req. 10 and Req. 16: Statements in SWCM represent formal statements
between items.

• Req. 14: NameItemsallow users to address items via human-type-able names.

Deliverable 1.2 Version 1.0 15

Nepomuk 15.01.2008

• Req. 5: Using formal SWCM Statements, Itemsto describe the metadata of
an Itemcan be represented.

• Req. 20: As each Statementand each Relationare Itemsthemselves, the user
has full meta-modelling abilities in SWCM.

• Req. 18: In fact, neither SWCM or CDS can really ensure this requirement.
It is up to the user to use renderable content for the non-NameItems. Name-
Itemsand Relationscan always be rendered as their content is restricted to a
plain string.

• Req. 13: Grouping of items can simply be achieved by linking several items
e. g. a, b, c to the same target t via any kind of relation e. g. p: (a,p,t),(b,p,t),
and (c,p,t). Then the query (*, p, t) returns the group of items.

• Req. 7: Step-wise formalisation is addressed by SWCM insofar, as a user
can explicate her knowledge as the content of items in unstructured form,
or structured via wiki-syntax (see 6). The migration from unstructured text
to wiki syntax is smooth. Knowledge can also be represented as formal
statements. Sec. 6 describes also how such statements can be derived from
wiki syntax to smooth the transition.

Other requirements are addressed by features of the CDS ontology:

• Req. 11: A simple, directed hyperlink in CDS is modelled as cds:hasTar-
get/ cds:hasSource. Any kind of resource can be linked with any other
resource (e. g. ideas, persons, files, issues, tags, types, . . .). The direction
and type of the link can be specified.

• Req. 6: Order in CDS is represented as cds:hasAfterand cds:hasBe-
fore.

• Req. 8: All kinds of hierarchies, including type-hierarchies are modelled in
CDS as cds:hasType(inverse: cds:hasInstance) or sub-relations of
these relations. This allows generic tools to browse all kinds of hierarchies.

• Req. 15: In CDS, each item can be used as anothers items type via cds:has-
Type. This allows to add each item a type and is required to enable full
meta-modelling, i. e. assign types to types (Req. 20).

• Req. 19: Is realised in CDS via cds:hasTag.

• Req. 7: A central idea of the CDS ontology layer is way how relations
are placed into the relation hierarchy: The most general relations (e. g.
cds:relatedand cds:hasTarget) are at the top, more specific ones
are further down. We expect users to refine existing statements as they see
fit with more specific relation types.

These requirements can only be met by tools based on CDS:

• Req. 17: Refactoring of content is probably a key strength of mind maps and
a key problem of wikis. Good CDS-based tools will allow for easy refactoring
of knowledge. The current HKW prototype is still limited in this respect, in
the future we plan to add drag & drop editing.

Some requirements are currently not met at all:

• Req. 9: Support for argumentation can easily be added by any end-user
simply by creating the appropriate relation types.

• Req. 12: Transclusion has to be enabled in the wiki syntax. This is planned
for the future.

Deliverable 1.2 Version 1.0 16

Nepomuk 15.01.2008

• Chapter 1
•Section 1.1

• Paragraph
• Paragraph
• Paragraph

• Chapter 2
• Section 2.1

• Paragraph
• Paragraph, see Sec. 1.1

• Section 2.2
• Paragraph
• Paragraph, see [Völkel2006]

1.1

2

1

2.1

2.2
Völ

Chapter

Chapter

Document

annotation

Legend: Has target has detail has after has annotation

Figure 4: A document represented in CDS

• Req. 2: Whether CDS-based tools can be used successfully by a user over
many years cannot yet be said.

CDS offers by its design three parallel ways to work with personal knowledge:

1. content of Items, e. g. simple keyword search for item retrieval, using struc-
tural and formal knowledge only to improve ranking,

2. Relation structure for retrieval by associative browsing as well as for compos-
ing documents from existing items, and

3. semantics of Itemsand Relationsfor reasoning.

Representing Documents in CDS As an example, consider Fig. 4 which shows
a mapping of document structures to a CDS knowledge model.

To represent a document in CDS, we can use one knowledge item to represent the
root of the document and store the title as the content of it.

Document metadata is modelled as additional items linked to the document root,
similar to the way how RDF is used.

Linear navigation is modelled via an arc of type hasNext between the items holding
the document parts.

Following the approach of Groza, Handschuh, Möller & Decker (2007), we model a
document structurally as a tree consisting of root, sections nested into each other,
paragraph and sentence. Sections can also contains figures and tables, which are
not further modularised. The relation hasPart is used to model the different kinds
of containment. To distinguish the different types of structural unit we use a
relation hasType and nodes representing types such as section, paragraph, etc.

Hennum (2006) describes ways to encode argumentative structures in RDF. One
basic observation is that modelling a document as a strict tree, i. e. as in XML,
doesn’t allow to model overlapping regions. It does not discuss the discourse
structures themselves in much detail. This gap is filled by Groza, Handschuh, Möller
& Decker (2007) which describes a small yet expressive ontology for argumentative
structures, which is based on Rhetorical Structure Theory Taboada & Mann (2006).
Groza, Handschuh, Möller & Decker (2007) models argumentation at the sentence

Deliverable 1.2 Version 1.0 17

Nepomuk 15.01.2008

2 METHODOLOGICAL APPROACH 2

2 Methodological Approach

Linguistic models traditionally describe natural language in terms of syntax and seman-
tics. There also exist models to describe tables in similar ways (cf. [Hur00, Hur99])
where tables are analyzed along the following dimensions: (i) Graphical – the image
level description of the pixels, lines and text or other content areas, (ii) Physical – de-
scription of inter-cell relative location, (iii) Structural – the organization of cells as an
indicator of their navigational relationship, (iv) Functional – the purpose of areas of
the tables in terms of data access, and (v) Semantic – the meaning of text in the table
and the relationship between the interpretation of cell content, the meaning of structure
in the table and the meaning of its reading.

Our approach builds on the model described above. However, we will not consider
the graphical dimension as no image processing will be necessary. Regarding the
physical dimension, we process the tables encoded in HTML format in order to get
a physical model of the table. In principle it can be seen as a graph describing the
cells being connected together. In order to capture the structural dimension of the
table, further processing is necessary (i) to determine the orientation of the table, i.e.
top to down or left to right, and, (ii) to discover groups of cells building logical units.
When talking about the function of a table, Hurst ([Hur00]) distinguishes between
two functional cell types access and data. Cells of the type data are the ones we are
interested when reading a table and which contain the actual information, while cells
of type access determine the path to follow in the table in order to find the data cell
of interest. Further, he distinguishes local (looking for one specific data cell) from
global (comparing the value of different data cells) search in a table. In our approach
we describe the functional dimension of a table in order to support local search. Such
a functional description requires (i) finding all the data cells in a table as well as (ii) all
the access cells to reach a given data cell of interest. In terms of database terminology,
we need to find the keys for a certain field in the table. In our approach we distinguish
between two functional types of cells: A(ttribute)-cells and I(nstance)-cells. A-cells
describe the conceptual nature of the instances in a column or a row. I-cells represent
instances of the concepts represented by a certain A-cell. I-cells can have the two
functional roles described by Hurst, i.e. they can play the role of data or access cells.

Tour Code DP9LAX01AB
Valid 01.05. - 30.09.04

Class/Extension Economic Extended
Single Room 35,450 2,510

Adult P Double Room 32,500 1,430
R Extra Bed 30,550 720
I Occupation 25,800 1,430

Child C No occupation 23,850 720
E Extra Bed 22,900 360

Table 1: Example of a possible table, found in [CTT00]

Regarding the semantic description we follow a completely different paradigm as
Hurst. Instead of adopting the relational model ([Cod70]), we describe the semantics

Figure 5: A Complex Table
2 METHODOLOGICAL APPROACH 4

Tour Code Tour Code Tour Code DP9LAX01AB DP9LAX01AB
Valid Valid Valid 01.05 - 30.09.04 01.05 - 30.09.04

Class/Ext. Class/Ext. Class/Ext. Economic Extended
Adult PRICE Single Room 35,450 2,510
Adult PRICE Double Room 32,500 1,430
Adult PRICE Extra Bed 30,550 720
Child PRICE Occupation 25,800 1,430
Child PRICE No occupation 23,850 720
Child PRICE Extra Bed 22,900 360

Table 2: Table 1 after cleaning and normalization step

contains a string-valued tag (such as table, h1 or title) and zero to many string-
valued attributes (such as href or src). A text node normally contains a single text
string and has no child nodes.

In the Cleaning and Normalization step we want to construct an initial table model
out of a DOM tree. This model cannot be simply generated by applying the algorithm
recommended by W3C � on a table element, but some additional steps of processing
and refinement are needed.

HTML documents are often very noisy in a sense that their syntactic structure is
incorrect. In order to clean the code and make it syntactically correct, we employ the
Tidy � utility . The outcome is a cleaned and corrected DOM tree.

The normalization of the rendered table is necessary, when an explicit rowspan or
colspan attribute indicates multiple row or column spanning cells and the actual total
number of rows or columns is lower than the attribute value. In this step our system
updates the corresponding DOM subtrees accordingly.

Table 2 shows the final reformulation of the example in Table 1, where cleaning has
been performed and copies of cells with rowspan and rowspan attributes have been
properly inserted into matrix structure.

2.2 Structure Detection

2.2.1 Assignment of functional types and probabilities to cells.

In the first walk over the table element (of the DOM tree), we convert a sub-tree into
a matrix structure, which is populated by cells according to its layout information. Dur-
ing this step the text of each cell is tokenized, and each token is assigned a token type
(see Figure 2). At the same time, we assign each cell in the rendered table a functional
type (A-cell or I-cell) and a probability for this type. By default, a cell is assigned no
functional type, which is observed by a probability having value zero, unless the cell
includes only/mostly tokens, recognized as dates, currencies, or numerical values. In
the latter case the cell is assigned the type I-cell, and its probability is calculated
based on the proportion of tokens which talk in favour of this type. We also assume
that the cell in the lowest right corner is always an I-cell, and the cell in the upper-left
corner is an A-cell. Therefore we assign them the type, regardless of their content, with
probability one.

Figure 6: A Complex, Normalised Table

level. In CDS argumentation can be modelled by relating content items via their
logical structure and at the same time encode the argumentative structure.

Finally, formal statements can be represented as CDS statements.

Representing Tables in CDS An important data structure for information or-
ganisation is a table or grid. At a first glance, a table seems to be a simple structure,
but their encoded semantics are often more complex. Hurst (2000) distinguishes
access and data cells. Pivk, Cimiano & Sure (2005) analyzes how concepts with
certain attributes belonging to certain classes are encoded in tables.

A simple table consist possibly only of a headline (access cell) and a number of cells
below (data cells). The headline describe e. g. a common type for the instances
below. Figure 5 shows a complex table example, taken from (Chen, Tsai & Tsai
2000). It shows a number of prices for different configurations of room bookings.
Figure 6, taken from Pivk et al. (2005) shows the same table in a normalised form.
Spanning cells have been split into single cells. Now it is easier to see that e. g.
“35,450” in fact refers to a value with “Tour Code=DP9LAX01AB”, “Valid=01.05-
30.09.04”, “Class/Ext.=Economic”, “Adult” and “Single Room”.

In CDS, one can represent this with a plain item (a) and its content“35,450”. This
item has a special kind of context, e. g. “has tour code”pointing to a NameItemwith
the content “DP9LAX01AB”, assuming tour codes are unique names within the
model. If not, a plain item can be used instead. In a similar way, a has a relation
“has class” to “Economic”. Furthermore, a can be tagged with “Adult” and typed
with “PRICE”. Besides concepts, tables also form a visual grid, implying a kind of
order on cells. Cells are arranged in columns and rows. CDS can also represent
the visual properties of a table. A table can be seen as a context for a number of
columns and a number of rows. Between each column and each row we can model
order using “has before” and “has after”. Inside each column, we find a number of
cells, linked via “has context” to its column and via “has before” and “has after” to
its neighbours.

Taking the example from Fig. 5, we would have an empty Itemt typed with“‘Table”.

Deliverable 1.2 Version 1.0 18

Nepomuk 15.01.2008

The table item has two items linked via “has detail”, namely an item c typed with
“columns” and an item r typed with “rows”. Item c has two children, c1 and c2.
We record furthermore a statement (c1,“has after”,c2’) to model the order of the
columns. Column c1 has 5 details: “Tour Code”, “Valid”, “Class/Extension”, c1a

and c1b. Among each consecutive cell we record again the order via“has after”. In
the end, each cell can be reached on multiple paths from the root item t.

Gradual Formalisation In current applications for recording and restructuring
knowledge, people do use a lot of structure to add semantics to their content.
E. g. they use different colors in a document to indicate its editing status. Or the
use different fonts to differentiate source code samples from descriptive test. Or
they use bold and italic font shapes to indicate emphasis or proper names. In mind
maps, they use little icons to differentiate e. g. ideas from tasks. Such semantics
can be communicated out-of-band to a human, but not yet to a computer.

It is the aim of CDS to let the user profit from formal annotations more easily.
CDS makes mapping of user-semantics to formal semantics easier by allowing the
user to start with less expressive, vague semantics.

There are several way for step-wise formalisation possible in CDS:

• The simplest thing a user can do is to create a plain item. This is equivalent
to take a piece of paper and write the date on it.

• Next the user can write plain text in this item. Or set the content to contain
an image. In any case, some piece of content is now addressable in the
model.

• The user can turn the item into a NameItem. The system has to check if
another NameItemwith the same name (content) exists already, and if yes,
the user has to decide what should happen: Delete the new item? Rename
it? Merge the two? As we see, even small formalisation steps can come at
some cost.

• A user can link any two existing items via one of the built-in relations. The
simples possible link is a simple, undirected related link between two items.
It is analogous to drawing a line between to pieces of paper. E. g. sometimes
it is easy to say that two items are related but it is hard to say how.

• The user can refine any existing relation. For related relations, the user
might as a next step choose a directed hyperlink (hasTarget) or express a
kind of similarity (similar to).

• The user can also create new relations, as they are needed. Browsing a
knowledge model is easier when the most suitable parent relation is chosen
from the existing relations (c. f. Fig. 3).

• The user can structure the content of an item using wiki syntax, e g. format
text in sections, lists and tables.

• The user can add formal statements to the wiki content (c. f. Sec. 6.3).

Queries in CDS Queries in CDS are basically SPARQL (Prud’Hommeaux &
Seaborne 2007) SELECT queries with only one projected variable. This allows
them be used in set-like operations like intersection, union and set difference. CDS
queries also need a kind of full-text query. Luckily, a component developed by
DFKI and Aduna, the LuceneSAIL10 can execute combined semantic queries, i. e.
queries involving SPARQL and full-text parts.

The formal query language is based on atomar triple patterns p ∈ P composed of
items i, relations r and the wildcard ∗. Note that all items and relations in CDS

10http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail

Deliverable 1.2 Version 1.0 19

http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail

Nepomuk 15.01.2008

are identified with a URI. Formally,

P = {(i, r, ∗), (i, ∗, i), (i, r, ∗)}, i ∈ I, r ∈ R

where the first parameter of the pattern denotes the source item of a statement,
the second the relation of a statement and the third parameter the target item of
the relation.

A query q ∈ Q is then either an atomar pattern, a negated query (¬), or the
intersection (∩) or union (∪) of two queries. Formally,

Q = {p,¬q, qa ∪ qb, qa ∩ qb}; p ∈ P ; qa, qb ∈ Q.

As an example, all friends of Dirk living in Karlsruhe that do not work at SAP,
would be represented as the query

q1 = q2 ∩ q3

q2 = q4 ∩ q5

q3 = ¬p1

q4 = p2

q5 = p3

p1 = (∗, worksAt, SAP)
p2 = (Dirk, knows, ∗)
p3 = (∗, livesIn,Karlsruhe)

or in one query

q = ((Dirk, knows, ∗) ∩ (∗, livesIn,Karlsruhe)) ∩ (¬(∗, worksAt, SAP)).

This query language (CDS-QL) can be mapped to SPARQL as follows: CDS-QL
patterns are mapped to SPARQL patterns by replacing each ∗ with ?var and each
item or relation with its URI put between angle brackets, that is <URI(item)>.

Negation can be represented in SPARQL via OPTIONAL and FILTER. For any
pattern p = (x, y, z) where one of the components is a wildcard ∗, the mapping to
SPARQL is

OPTIONAL { x y z } .
FILTER(!bound(?var))

Intersection of two patterns is expressed as simply separating the two corresponding
SPARQL patterns via a single dot (“.”).

Union in CDS-QL is mapped to SPARQLs “UNION” keyword.

Assuming the following URI mapping:

worksAt 7→ http://example.com/worksAt
SAP 7→ http://example.com/SAP
Dirk 7→ http://example.com/Dirk
knows 7→ http://example.com/knows
livesIn 7→ http://example.com/livesIn
Karlsruhe 7→http://example.com/Karlsruhe

the above example results in the SPARQL patterns:

p1 7→ ?var,
<http://example.com/worksAt>,
<http://example.com/SAP>

p2 7→ <http://example.com/Dirk>,

Deliverable 1.2 Version 1.0 20

Nepomuk 15.01.2008

<http://example.com/knows>,
?var

p3 7→ ?var,
<http://example.com/livesIn>,
<http://example.com/Karlsruhe>

The full CDS-QL example query as a SPARQL query is

SELECT ?var WHERE {
<http://example.com/Dirk>

<http://example.com/knows>
?var .

?var
<http://example.com/livesIn>

<http://example.com/Karlsruhe> .
OPTIONAL {

?var
<http://example.com/worksAt>

<http://example.com/SAP>
} .
FILTER(!bound(?var))

}

We extend SPARQL SELECT queries with two important concepts for CDS users:

Transitivity The user needs the option to treat each Relationas a transitive relation.
This feature is not possible in standard SPARQL.

Equality Sometimes it is desired to merge the semantic links of two (ro more) items
linked via sameAs. The CDS sameAs is not the same as the owl:sameAs,
as the cds:sameAs is not always in effect. This allows e. g. to browse two
different items linked via sameAs as two different items. A necessary feature
to be able to separate them again.

2.6 Realisation

As the CDS ontology is represented in an SWCM model, the CDS API is realised
as an extension (technically a decorator) of the SWCM API. As such, a user can
use the CDS API to perform arbitrary SWCM operations plus convenience support
for the specific CDS ontology relations.

The SWCM API uses a layer called swecr.core as its persistence layer. An overview
of different CDS tools accessing the CDS API can be found in Fig. 7. Note how
the CDS tools operator on the conceptual CDS model, which is implemented by
reusing some parts of RDF. The complete CDS API description can be found online
at http://semweb4j.org/site/cds.api/apidocs/.

swecr.core.api 11 This is a really simple API layer, offering access to other persis-
tence parts:

getModelSet() returns an RDF2Go ModelSet, which is a set of named
RDF graphs.

getBinStore() returns an IBinStore12. This is a simple component al-
lowing to store and retrieve binary content addressed by URIs.

getTextIndex() returns a thin wrapper interface around a full text index,
typically Lucene.

There exist currently two implementations: swecr.core.simple13 which di-

11http://semweb4j.org/site/swecr.core.api
12http://semweb4j.org/site/binstore
13http://semweb4j.org/site/swecr.core.simple

Deliverable 1.2 Version 1.0 21

http://semweb4j.org/site/cds.api/apidocs/
http://semweb4j.org/site/swecr.core.api
http://semweb4j.org/site/binstore
http://semweb4j.org/site/swecr.core.simple

Nepomuk 15.01.2008

iMapping HKW

CDS API

Persistence

NLP,

NEPOMUK integration

happens here ...

PIMO

NRL

Ideas,

notes, ...

Classes,

Properties,

Documents,

Data ...

QuiKey

Figure 7: Overview of CDS API usage

rectly stores data in Sesame, Lucene, and a simple binary store. This imple-
mentations offers no semantic queries (using RDF and full text combined)
yet. The second implementation, swecr.core.nepomuk14 stores content via
the RDF2GoRepository, tunnelled over HTTP, in NEPOMUKs RDFReposi-
tory. This implementation cannot store binaries yet.

swecr.model 15 This is the data model part of CDS. It implements the model
described in Sec. 2.3.

cds 16 The ICdsModel extends the SWCM IModel interface. The main dif-
ferences between a plain SWCM model and a CDS model are: Support for
inferencing and a built-in hierarchy of relations.

Mapping to RDF We need to map only the data model part (SWCM, c. f.
Sec. 2.3). The ontology layer of CDS is represented via the data model. In this
paragraph we briefly explain how diverse SWCM constructs are currently mapped
to RDF. We use the following namespace bindings (Turtle syntax):

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix swcm: <http://purl.org/net/swcm#> .

Note: The implementation currently uses random URIs, encoding the current sys-
tem time and a random number, prefixed by urn:rnd:, resulting in URIs such as
urn:rnd:252f391c:1167c5d5744:-7fd7.

Item Each item with URI i is represented as i rdf:type swcm:Item. If the
item has content attached to it, it is represented as i swcm:hasContent
content. Additionally, each item has a change date (swcm:hasChange-
Date) and an author (swcm:hasAuthor).

An example of an item with content:

<urn:rnd:252f391c:1167c5d5744:-7f44> rdf:type swcm:Item
; swcm:hasContent "Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Proin id enim a
velit cursus tempor. Aenean non erat. Mauris
imperdiet, sem in iaculis interdum, velit libero

14http://semweb4j.org/site/swecr.core.nepomuk
15http://semweb4j.org/site/swecr.model
16http://semweb4j.org/site/cds

Deliverable 1.2 Version 1.0 22

http://semweb4j.org/site/swecr.core.nepomuk
http://semweb4j.org/site/swecr.model
http://semweb4j.org/site/cds

Nepomuk 15.01.2008

aliquam nisi, scelerisque tincidunt leo dui eget pede."
; swcm:hasChangeDate "2007-11-26T14:48:12Z"^^xsd:dateTime
; swcm:hasAuthor swcm:author-unknown
.

NameItem NameItems are represented almost exactly like items. In addition, they
have the type swcm:NameItem assigned. An example:

<urn:rnd:252f391c:1167c5d5744:-7fd7> rdf:type swcm:Item
; rdf:type swcm:NameItem
; swcm:hasContent "Dirk Hageman"
; swcm:hasChangeDate "2007-11-26T14:37:09Z"^^xsd:dateTime
; swcm:hasAuthor swcm:author-unknown
.

Relation A Relation is a special kind of NameItem. It has an additional inverse
relation specified via swcm:hasInverse. And it has the type swcm:Re-
lation assigned. An example:

<urn:rnd:252f391c:1167c5d5744:-7fd0> rdf:type swcm:Item
; rdf:type swcm:NameItem
; rdf:type swcm:Relation
; swcm:hasContent "writes PhD at"
; swcm:hasChangeDate "2007-11-26T14:38:09Z"^^xsd:dateTime
; swcm:hasAuthor swcm:author-unknown
; swcm:hasInverse <urn:rnd:252f391c:1167c5d5744:-7fcf> .
.

Statement A Statement is also an item, but has the additional type swcm:Sta-
tement assigned. A Statement may not be a NameItem or Relation at
the same time. A Statement, just like a normal Item may have content.
Below is an example of a statement without content attached. Note that
the statement is in RDF terms “reified”, to allow addressing it. The plain,
un-reified statement is also recorded in the RDF to simplify answering of
SPARQL queries:

<urn:rnd:252f391c:1167c5d5744:-7fcd> rdf:type swcm:Item
; rdf:type swcm:Statement
; swcm:hasChangeDate "2007-11-28T15:18:19Z"^^xsd:dateTime
; swcm:hasAuthor swcm:author-unknown
; swcm:stmtSource <urn:rnd:252f391c:1167c5d5744:-7fd7>
; swcm:stmtRelation <urn:rnd:252f391c:1167c5d5744:-7fd0>
; swcm:stmtTarget <urn:rnd:252f391c:1167c5d5744:-7fd1>
.

<urn:rnd:252f391c:1167c5d5744:-7fd7>
<urn:rnd:252f391c:1167c5d5744:-7fd0>
<urn:rnd:252f391c:1167c5d5744:-7fd1> .

Current Level of Integration in NEPOMUK The CDS API has an imple-
mentation which depends on a swecr.core API. Both levels are NEPOMUK-
independent. The swecr.core API requires three services: An RDF triple store,
a full-text search engine and a binary store.

Two implementations of the swecr.core API exist: First, a stand alone imple-
mentation, based on Sesame, Lucene and BinStore.

A second implementation is based on NEPOMUKs RDF2GoRepository which con-
nects via HTTP to a running NEPOMUK server. The NEPOMUK repository
contains already a combination of RDF triple store and full-text search engine. A
setup using this implementation is depicted in Fig. 8.

Deliverable 1.2 Version 1.0 23

Nepomuk 15.01.2008

Storage Services

Applications

SSD
Semantic

Middleware

Networking
Operating
System

Mail Web Browsing Office WorkKnowledge
Workbench Explorer Blog Task Manager

HTTP

OSGI

DBus Metadata Storage

Service Providers

Mapping & Alignment Social Services

Knowledge Structures Wrapping

Kernel File SystemNetworkLiberaries

Peer2Peer Services

Distributed Search

HKW

CDS-API

Swecr.Core.NEPOMUK

RDF2GoRepository

(via HTTP)

Simple

BinStore

Swecr. Core.API

CdsModel

RDF2Go

ModelSet
Lucene IBinStore

Figure 8: Current Level of Integration

Deliverable 1.2 Version 1.0 24

Nepomuk 15.01.2008

3 Hypertext-based Knowledge Workbench (HKW)

Figure 9: HKW prototype screen shot, focusing on Dirk Hageman

This section describes the current prototype of the Hypertext-based Knowledge
Workbench (HKW). HKW allows to create, browse and author CDS models.

HKW is the first of two prototypes currently under development in NEPOMUK,
completely based on CDS ideas. HKW exposes all CDS ideas to the user, iMapping
(the other prototype) adds the notion of space to CDS.

Although HKW has among other things, been influenced by the idea of semantic
wikis, HKW is not like an ordinary semantic wiki, as it has no notion of“document”.
Instead, it puts the focus more on micro-content and its relations. As a direct result,
searches and navigation do not bring up long wiki documents, but short fragments
of text with its relations to other parts.

3.1 Design

The HKW prototype has been designed based on the feedback collected on the early
NEPOMUK semantic wiki prototypes, described in Kotelnikov, Polonsky, Kiesel,
Völkel, Haller, Sogrin, Lannerö & Davis (2006).

Semantic Pad has the ability to create customised views that include business
logic. The review feedback evaluated the programming as too hard for a
casual end user. Therefore we did not include this functionality into the
HKW prototype. There were no complaints on the wiki syntax used by
Semantic Pad. As the syntax is parsed via an re-usable, powerful component
(WikiModel, see Sec. 6.1), we plan to integrate it into HKW.

Kaukolu got positive evaluations for the auto-completion mechanism. Hence
HKW uses auto-completion almost everywhere. Kaukolu got negative feed-
back for unclear instant reward of adding semantic statements on wiki page.
HKW makes creation of statements more explicit, by adding items into dif-
ferent boxes statements are created. Additionally, the new items are shown,

Deliverable 1.2 Version 1.0 25

Nepomuk 15.01.2008

where they have been created, offering instantly better ways for navigation
and orientation.

Semantic MediaWiki (SMW) got the best feedback, mostly because of its matu-
rity. The strongest point is that SMW can be used just like a normal wiki,
completely ignoring the semantic features. As the current HKW cannot parse
wiki syntax yet, this is not yet true for HKW. But it is out goal to achieve
the same simplicity of use ad SMW (allowing the user to ignore semantic
features). SMW is simpler, which comes at a cost of expressivity, compared
to Kaukolu. HKW will additionally allow to state statements via wiki syn-
tax, which is described in Section 6.3. Auto-completion will include links to
desktop resources.

Requirements stated in Kotelnikov et al. (2006):

• Composition of documents using fragments of different documents: Create a
new document based on fragments of different documents of previous work.
– needs multi-level transclusion

• Ontology refactoring: The ontology properties and types should be refac-
torable. – Done.

• Template system: The system should let users define advanced rules defining
the way resources should be displayed, using templates. – HKW has chosen a
path requiring to dedicated templates. The view is configured by classifying
relations.

• Visual refactoring: Users with appropriate rights should be able to refactor
the contents visually, changing their names, their status, their meta-data. –
Done for contents.

Compared to the semantic wiki prototypes, the CDS-based tools aim for

• A tighter integration with desktop data

• Intuitive, efficient graphical user interface (iMapping)

• A switch at the user interface level from RDF to CDS, to reduce cogni-
tive load for knowledge articulation. RDF will be use behind the scenes for
implementation purposes only.

• Overcome segmentation of knowledge into pages – instead in CDS knowledge
is represented as a highly networked set of small items.

Deliverable 1.2 Version 1.0 26

Nepomuk 15.01.2008

3.2 User Guide

HKW is an editor and browser for CDS models. The GUI runs in a web browser
(currently only the open-source browser Mozilla Firefox is supported). The core
concept of the GUI is the notion of focus on a given element. Fig. 9 shows a screen-
shot of the HKW GUI focusing on the NameItem “Dirk Hageman”. Below this
selected item we have a large area for quick text input, related to“Dirk Hageman”.
The different axes of CDS are arranged around the centered concept. Each axis
has a different color. The most important axis, the hierarchical cds:hasCon-
text / cds:hasDetail is rendered in yellow. Context is at the top, the details
are below. Similar, the axis for order, cds:hasBefore andcds:hasAfter are
arranged left and right of the center, rendered in green. Annotations, tags and types
are rendered in red. Their inverses are subsumed under “has annotation member”
at the bottom. Arbitrary, directed links are rendered in blue, incoming links are left
in“has source”, outgoing links are right under the headline“has target”. The black
boxes are relations of the type “related” and “similar” which are both undirected
relations. The GUI shows relations always in their most specific box. Items are
only rendered in different boxes at the same time if the user assigned multiple
super-relations to a relation.

Figure 10: HKW GUI reference

Figure 10 shows a screen shot of the current HKW prototype, with all GUI parts
numbered. In the remainder of this section we describe the functionality of each
part.

1 Home – focus on ”RootItem”

2 Load – there is one slot to store models. This button replaces the current state
with the one stored on disk.

Deliverable 1.2 Version 1.0 27

Nepomuk 15.01.2008

3 Save – store the current state on disk. Overwrites an existing stored state.

4 Clear – deletes the current state, adds the built-in relations and focuses on
RootItem.

5 Clear – this button deletes the current state and adds a built-in dummy model
for testing purposes. This button will be removed in the future.

6 Address bar – this bar supports auto-completion. The user can enter a known
name item and press (7) to navigate to it. Or she can enter a new name for
a name item. Pressing (8) creates a new name item with the given name
and navigates to it. It is not possible to navigate to non-name items via this
address bar.

7 Navigate to name item – see (6)

8 Create name item – see (6)

9 has tag – this panel allows the user to use tags on the focused item (26). It
shows that ”has type” (10) is a sub-relation of ”has tag” and that there are
two items connected via the relation ”has type” to the current focus item
(”Dirk Hageman”). In fact, this is a bug - the relation ”has type” should be
shown in box (15). Other boxes show sub-relations in a similar way.

10 ”has type” – a sub-relation of ”has tag”.

11 ”has context” – showing all items which act as a context (opposite of detail)
to the focused item. ”Dirk Hageman” is only in the context ”RootItem”.

12 ”has annotations”– Shows all annotations of the current focus item. The little
arrow (described in 41) allows to add new annotations.

13 delete statement – this red X allows to delete the statement (”Dirk Hageman”
”has type” ”person”). None of the three items themselves are deleted, only
the statement.

14 Navigate to ”person”. All items in the view, including the relations (”has tag”,
”has type”) can be clicked on and will then be the focus item.

15 ”has type”– shows all types of the focus item. New types can be added via the
box and the green arrow.

16 ”edit item” – allow to switch the focused item to edit mode. in edit mode,
the user can change the string associated with the item. No links ever break
when doing this.

17 focus statement – allows to navigate to the statement (”Dirk Hageman” ”has
type” ”person”). (40) shows a focused statement.

18 ”has after” – showing all items that are ”after” the focus item.

19 ”has before” – shows all items ”before” the focus item.

20 Create or add new item – allows to create a new Item (or re-use an exiting
NameItem) which will be added as a tag of the current focus item. In
other words, a statement (current item, has tag, new Item) will be added.
This entry box does not allow to create new relations. A similar entry field,
allowing to create new relations, can be found in 43. The field 20 supports
auto-completion.

21 This button (green arrow) adds the item that has been entered in 20. Alter-
natively, the user can type Ctrl-Return for the same effect.

22 This green arrow allows to add the text entered into the main box (35) as a
new detail. In the future, the text in this box will additionally be interpreted
as wiki syntax, possible creating further Items and Statements.

Deliverable 1.2 Version 1.0 28

Nepomuk 15.01.2008

23 The box ”has source” shows all Items x that are connected via (x, has target,
current focus item) or the inverse (current focus item, has source, x). More
figuratively, it shows all items that have a hyper-link pointing towards the
current focus item. The opposite directions is shown in 32. This box also
shows all sub-relations of ”has source”, in the screen-shot those are is super-
vised by and works at. The latter has a further sub-relation, writes PhD at.
The statements expressed by the box are thus (Dirk Hageman, is supervised
by, Claudia Stern) and (Dirk Hageman, writes PhD at, SAP). 41 allows to
add ne members to this box.

24 This button deletes the current focus item. Recursively all statements about
this item are also deleted. Deleting a relation (by first focusing on it, then
pressing this button) deletes all statements using this relation.

25 This symbol (an underlined A) shows that the current focus item is a Name-
Item. Pressing the button turns the NameItem into a normal Item. A normal
item is symbolised with an icon showing a piece of paper with three lines on
it (not shown in the screen shot).

26 Focus item – here a representation of the current focus item is shown.

27 Same as 24.

28 This icon indicates that the item is read-only. Therefore the user is not allowed
to change the type. Relations are always NameItems.

29 Same as 16.

30 Same as 26.

31 Showing the inverse of the relation. The user can navigate to it.

32 The ”has target” box. This is the counterpart to 23. In this box (32) the user
sees all outgoing links, that point away from the current focus item. 23 and
32 show the statements as the user entered them, although each statement
has a corresponding inverse statement that could be rendered instead. The
relation writes PhD at has been considered by the user to both point toward
the focus item, hence it is shown in 23, and pointing away from the focus
item, hence it is also shown in 32. Most relations have only one direction.

33 Does not exist.

34 This icon collapses the box 35. It turns into a ”plus”-sign which expands the
box again.

35 Main entry panel to quickly add new details of the current focus item.

36 This view shows (26) when the user has navigated (focused on) a relation.

37 Same as 24.

38 Icon showing that the user has navigated to a statement. Statements are
always normal Items.

39 Same as 16. Allows to edit a textual content of the statement.

40 View when the user navigated to a statement. Inside, the statement the user
focused on is shown twice. In the blue line, the user can see the current
statement and navigate to each item that constitutes it. Below, the same
statement is shown as auto-completion text boxes. Here the user can change
the current statement, e. g. set a new source, target or relation. Creation of
new items for source or target is also possible.

41 Pressing this expand-button shows the entry-panel with 43, 44, and 45.

Deliverable 1.2 Version 1.0 29

Nepomuk 15.01.2008

42 This box shows all details of the current focus item, similar to 23 and 32. The
opposite direction of ”has detail” is ”has context”, which is shown in 11.

43 Allows to create new relations, but only together with adding items to the
current box. The relation will automatically be a sub-relation of the relations
main box. E. g. when the user creates a relation in 23, the new relations is
automatically a sub-relation of ”has source”. The system will automatically
create an inverse relation, named name of relation-inverse. 43 supports
auto-completion on existing relations.

44 Allows to select existing items (via auto-completion) or create new items. To-
gether with 43, the user enters a statement of the form (focus item, relation
entered via 43, item entered via 44).

45 Pressing this button (or hitting Ctrl-Return) commits the new statement (43,
44) to the system.

46 Showing ”similar” items. This is another box like 23.

47 Shows the ”annotation members”. Those are the opposite of 9, 12 and 15. In
other words, here the instances of types, the items tagged with a tag, or the
items annotated with an annotation are shown.

48 Showing related items. This is a box similar to 23, but slightly different. The
relation ”related” has no direction. Hence the statements (x, related, y) and
(y, related, x) are equal.

49 Together with 50 and 51, this allows the user to state queries to the system
or enter free-form statements. If all three boxes are filled (all boxes support
auto-completion) and the user presses the green arrow (52), then a new
statement is added to the system. If on of the boxes is left blank, it is
interpreted as a wild-card and a query is performed.

50 See 49.

51 See 49.

52 See 49.

53 Help icon. Navigates to the NameItem ”Help”.

54 Is the box showing the results of queries posed in 49.

Deliverable 1.2 Version 1.0 30

Nepomuk 15.01.2008

3.3 Realisation

The HKW is based on the CDS API. As such, it has the same integration with
NEPOMUK as the CDS API.

The HKW prototype has been realised with the Google Web Toolkit (GWT), an
open-source AJAX-enabled web user interface toolkit by Google Inc. AJAX web
GUIs run a certain part of the program code in the end-users browser. Traditional
web applications ran all code on the server side, resulting in a flickering user ex-
perience. Each time the user clicked, she had to wait for a complete page reload
from the server. Network latency thus really added up as user wait times. With
AJAX, some code is running as JavaScript in the browser, often not requiring a
page reload as all for navigation operations. If a page reload is required, JavaScript
requests only the needed data from the server and changes the loaded pages in the
browser – without a reload. The result is a much more fluid user experience. The
GWT toolkit runs only stable in Firefox and Internet Explorer. The same is true
for many web applications provided by Google Inc. As Firefox is a popular, stable
browser available for free on all platforms (Windows, Linux, Mac) this was not
considered a draw-back.

Programming JavaScript, a dynamically typed script language, is not easy. For
dynamically typed languages, there are no IDEs with e. g. refactoring support. The
different APIs of different browsers make the problem even harder. The unique
approach of GWT is to write the code in Java, a statically typed programming
language, for which many mature IDEs exist. GWT includes a compiler, which
translates the Java code into JavaScript code. Additionally, GWT includes a widget
library, similar to desktop GUI frameworks such as Swing or SWT (from the Eclipse
project). Programming with GWT thus relieves the user from dealing with browser
differences and JavaScript.

The HKW prototype uses GWT widgets and some custom-build widgets. Styling
in GWT is done via Cascading Stylesheets (CSS). The server side sits on top of a
CDS API, which is described in Sec. 2.6.

3.4 Evaluation

3.4.1 Expert Evaluation – Method

Our usability experts from KTH evaluated both the Hypertext-based (Sec. 3.4.2)
and a prototype of the visual (Sec. 4.1.5) Knowledge Workbench following an in-
tegrated method for evaluating interfaces developed by McQuaid & Bishop (2001)
with a few changes. The method consists of five steps:

1. Gathering domain knowledge.

2. Conducting the heuristic evaluation.

3. Categorizing the issues.

4. Prioritizing the issues.

5. Writing the report, including recommendations for solving the problems.

The first step, gathering domain knowledge, was considered already done since
we, through previous activities, have good knowledge of what NEPOMUK and
WP1 wants to achieve. Though, before we performed the evaluation of each
prototype, we defined the different prototypes’ function and aim and also decided
which persona would be most relevant for each prototype. We then performed the
evaluation as a group, using a projector showing the prototype. This is different
from McQuaid’s method where different people perform the evaluation individually.
Instead, we went through, group wise, the different steps of performing tasks that

Deliverable 1.2 Version 1.0 31

Nepomuk 15.01.2008

Luxuries Strategic

Targeted High-Value

Importance

D
iffi

cu
lty

Figure 11: Prioritizing chart

the prototypes help you with. Related to heuristics and design guidelines (Nielsen
2005) as well as our own experience as usability professionals we wrote down our
judgments and suggestions on post-it notes.

We then sorted the post-it notes in low-level and high-level problems and concerns.
Low-level problems are on the screen-level and refer to the usability of buttons, di-
alog boxes, and other elements that appear on a single screen. High-level problems
refer to the usability of the overall interaction, including problems with navigation
and task sequence. We also noted other concerns like valuable features that al-
ready work. When the post-its were sorted we prioritized the problems according
to how important it is to fix them, from the users’ perspective, and how difficult
it is to fix them. The latter is from the developers perspective and since we are
not developers it was rather difficult to make a correct judgment. Our technical
partners should reconsider this prioritisation.

The prioritisation was made on the chart in Figure 11. The y-axis represents
the difficulty of making the improvement and the x-axis is how important the
improvement is for the users. The different fields can be defined in the following
way:

• High-value: very important issues that require less effort to fix

• Strategic: very important issues that require more effort to fix

• Targeted: less important issues that require less effort to fix

• Luxuries: less important issues that require more effort to fix

This report is the result of the fifth and final step in the evaluation process; writ-
ing the report, including recommendations for solving the problems. The report
describes the results of the evaluation of each of the prototypes, the identified
problems as well as recommendations for solutions to the problems.

3.4.2 Expert Evaluation – Results

The purpose of the HKW prototype that we tested is to show information and
relations between resources as well as editing the relations between them. All the
NEPOMUK personas are relevant for the prototype, but we decided to focus on
Dirk and Claudia during the evaluation.

The HKW prototype that was evaluated had no visible indication of version17.

17The evaluated version can be downloaded from http://semweb4j.org/repo/de/
xam/cds.gwt/0.0.3/ and will run permanently at http://octopus13.fzi.de:
8888/cds.gwt-3/

Deliverable 1.2 Version 1.0 32

http://semweb4j.org/repo/de/xam/cds.gwt/0.0.3/
http://semweb4j.org/repo/de/xam/cds.gwt/0.0.3/
http://octopus13.fzi.de:8888/cds.gwt-3/
http://octopus13.fzi.de:8888/cds.gwt-3/

Nepomuk 15.01.2008

Luxuries Strategic

Targeted High-Value

Importance

D
iffi

cu
lty

CDS

More natural language,
use “is a” instead of

“super-type”

 Too many fields.
Difficult to know
what all the boxes
are for. What do
they all mean and

how are they related
to each other? The

different boxes
should maybe have a

heading

Case sensitive
recognition, “d” does not

give you same as “D”.

The heading is
repeated when
adding tag or an

annotation

Difficult to understand
how to input text.

Too much “has”...

High-level

“has similar” and
“has alias” is not
identical, which it

should be.

Figure 12: Problem prioritisation - High-level

High-Level Results Users in the different case studies are asking for a better way
to browse and search for information, as well as to see the connections between
different resources, in their knowledge base and this is what the CDS prototype is
aiming to provide.

Powerful semantic modelling tools (e. g. Protégé and TopBraid Composer) are
loaded with features and very flexible. For a demanding modelling professional,
they have much to offer. But they are not easy to use. HKW could make semantic
modelling easier by its approach to emphasize some of the most important semantic
dimensions, giving them dedicated positions on the screen. Relevance at the cost
of flexibility.

The auto complete is very helpful for the uses when searching and adding informa-
tion.

The prototype it very thorough, which is both positive and negative. The negative
aspect is that it is more difficult to evaluate. But it is positive that the prototype
can do so much and gives such a comprehensive picture of the different resources.

More natural language, use “is a” instead of “super-type” To exemplify: the rela-
tion “super-type” may not be a natural concept for describing. For instance,
in everyday language people would probably say that Dirk is a person, instead
of Dirk has super-type person. Using natural language the annotation tools
would probably be used to a greater extend when people can understand the
relations.

Too many fields Many people claim that Google is used worldwide just because it
is the interaction with it is so simple. There is no question what to do when
the search engine is rendered in the web browser. With the HKW prototype
it is difficult to know where to start and what all the boxes (c. f. Fig. 13)
are for. What do they all mean and how are they related to each other? The
different boxes should have a heading that indicates what the box is used
for and be grouped according to functionality. Also, the HKW could have
two different modes, simple and advanced mode. We recommend one field
for just the most basic relations and another for a power user who wants to

Deliverable 1.2 Version 1.0 33

Nepomuk 15.01.2008

Figure 13: Example showing all the fields

manipulate the data in a more sophisticated manner.

Case sensitive recognition, ”d” does not give you same as ”D”. Dirk and dirk should
be the same item. If they are different, or the name for two different items
is the same (e. g. Paris (the city) or Paris (the celebrity)) what separates the
items should be explicitly explained.

Difficult to understand how to make text input The text in a text field should dis-
appear when the field is activated. It makes the user aware of that the field
is meant for her.

The heading is repeated when adding tag or an annotation Separate the heading
and the tag or the annotation. Either delete one of them (reducing the
cognitive load on the user) or use them to complement the information to
exemplify and bring more meaning to the functionality. For example ”has
target”and ”has source”are superfluous for the users to understand that Dirk
has a girlfriend name Anna or that Claudia is his boss.

Too much ”has”... To the user, the concept ”Context” works as well as ”has Con-
text”. All ”has” presented in the prototype are not needed to bring clarity
and increase usability. Instead, it has the opposite effect and makes the
user uncertain and insecure and wonder about the application, which is not
recommended if you want to develop an application with high usability.

Identity ”has similar” and ”has alias” is not identical, there should be a possibility
to add a relation that treats objects as identical. “Dirk Hageman”,“Dirk”and
“dirk” should all “love Anna” and “like running” because they are the same
person. Adding or editing a relation to ”one of them” should effect ”them
all”.

Low-Level Results

Layout Overlapping text boxes when adding text, e. g. in ”has tag”

Colors Is there color-coding? If so, make that explicit. What do the colors mean?

Layout The ”X” is too close to the link, too easy to delete (see Fig. 15). And if
you do delete it is difficult to undo.

Layout What is the purpose of the large area in the middle? When you add text
there it appears as a detail.

Deliverable 1.2 Version 1.0 34

Nepomuk 15.01.2008

Luxuries Strategic

Targeted High-Value

Importance

D
iffi

cu
lty

Overlapping text boxes
(when adding text)

CDS

“has type” is added
under “has tag”

The application needs to
adapt to different

resolutions. Scrolling
side-ways is not

appreciated by any users.

What is a “normal
item” (the A icon)?

The “X” is too close
to the link, too easy
to delete. And if you

do delete it is
difficult to undo.

The A is used for
things that is is not
normally used for,
which is that it has

to do with text

The same symbol is
used for different

actions, like “-” is used
for delete/hide and “x”
is used for delete/clear.

What is the purpose
of the large area in
the middle? When

you add text there it
appears as a detail

When entering a
term in the input

field on the bottom
of the application
you get a query

results - this was a
surprising results

The input field with
three boxes in a row

needs to appear
more central in the

application.

Autocomplete is
very nice, but it does
not seems to work

all over.

The tool tips are not
exact, sometimes

“hide” means “show”.
The same icon is used for
both “expand” and “hide”

Low-level

Is there color
coding? If so make it
more explicit than it

is now.

Figure 14: Problem prioritisation - Low-level

Figure 15: An example showing the ”X” being too close

Figure 16: Same icon for ”expand” and ”hide”

Deliverable 1.2 Version 1.0 35

Nepomuk 15.01.2008

Availability The application needs to be dynamic and adapt to different resolutions.
Scrolling side-ways is generally not appreciated by any users that we have
observed.

Consistency The same symbol is used for different actions, like ”-” is used for
delete/hide (see Fig. 16) and ”x” is used for delete/clear.

The auto-complete functionality is good, but it does not seem to work glob-
ally in the whole prototype.

The tool-tips are not exact, sometimes ”hide” means ”show” – e. g. the plus
for the main entry area.

Icons The A is not used for text, which it normally is, and that is confusing to the
user. The same icon is used for both ”expand” and ”hide”

Language What is a ”normal item” (the A icon)?

Surprises When entering a term in the input field on the bottom of the application
you get a query result - this was a surprising result. A nice surprise but this
could just as well happen if you input the same text in the field at the top
and instead of ”Go to:” can choose ”Query:”.

”has type” is added under ”has tag”.

3.4.3 End-User Feedback

FZI also performed a first internal round of gathering end-user feedback. We
demonstrated the prototype (same version as for KTH expert evaluation) and let
the user test it. We collected the following points (random order):

• Dates should have a special support. In a personal diary I will use a lot of
dates. Ideally, a kind of calendar pop-up would ensure that I can only enter
dates for certain relations. . . . maybe entering other data should be possible,
too, but with a warning. It’s better to guide the user than to force him.

• Relations should have icons instead of weird names. Why not have a relation
like has icon and the ability to upload image files?

• I would like to have some kind of macros in the wiki syntax, so that I could
e. g. type [htp] and the system would expand it to hasType Person.

• The big box in the middle should allow to enter statements in wiki syntax.

• I need a way to change a NameItem into a normal Item and vice versa.

• In general, there could be a context-menu with a right-click, for operations
on the item. Then one would not have to focus on another item for certain
operations.

• The UI should allow to report new bugs and feature requests right from the
main screen

• Ability for import of mind-maps. First, each relation is mapped to has target,
but then I can easily refine it.

We will perform further similar studies with end-users, collect more requirements
and prioritise them. These requirements will round up the results of the expert
evaluations from KTH to drive further development of the HKW prototype.

Deliverable 1.2 Version 1.0 36

Nepomuk 15.01.2008

4 Visual Knowledge Workbench

Like the Hypertext-based Knowledge Workbench, the Visual Knowledge Workbench
has the goal to support knowledge workers to enter and maintain contents in a
semantically structured way. They both specialise in letting the user create her
own structures in various degrees of formalisation, i. e. supporting the construction
of hybrid knowledge models in CDS. These CDS models can encompass parts that
are fully formalised semantic models, but at the same time casual text notes, as
well as many weakly structured semi-semantic elements.

The Visual Knowledge Workbench mainly consists of the iMapping client for vi-
sually authoring CDS models. It is build to allow intuitive authoring of personal
knowledge bases using mainly graphical mouse interaction. The iMapping client is
described below in Sec. 4.1. It will be complemented by the QuiKey tool, a kind
of smart semantic command-line that focuses on highest interaction efficiency to
browse, query and author CDS Models. QuiKey is described in Sec. 4.2. During
the integration efforts scheduled for 2008, some additional components might be
created to enrich the Visual Knowledge Workbench.

4.1 iMapping

iMapping is a technique for visually structuring information objects. It supports
the full range from informal note taking over semi-structured personal information
management to formal knowledge models. With iMaps, users can easily go from
overview to fine-grained structures while browsing editing or refining the knowledge
base in one comprehensive view.

An iMap is comparable to a large white-board where information items can be
positioned like post-its but also nested into each other. Spatial browsing and
zooming as well as graphical editing facilities make it easy to structure content in
an intuitive way. iMapping builds on a zooming user interface approach to facilitate
navigation and to help users maintain an overview in the knowledge space.

The iMapping approach is described along with its motivations and foundations
in more detail in Haller (2006) – the accompanying poster is depicted in Fig. 17.
In the following, we describe some more technical details that go beyond what is
published there.

4.1.1 iMapping Design principles

Criteria for Visual Mapping Environments The core design principles of iMap-
ping has arisen from prior work on visual mapping techniques for the organisation
of knowledge (Haller 2003): It deals with the psychological foundations of visual
mapping techniques, compares existing approaches and applications and deduces
a set of criteria, which – from a cognitive psychological point of view – should be
met by cognitively adequate mapping techniques and tools.

This is the list of criteria and how they are met by the iMapping design. Some of
them refer more to the mapping technique itself while others are rather to be met
by the corresponding software tool. However they are not treated separately here.
For a more detailed description of these criteria, see Haller (2003).

Free Placing Any information item can be freely placed anywhere on the canvas
or inside any other item.

Free Relations Links between Items can be set in any level of formality: They are
not mandatory at all an can be omitted; explicit but unspecified links simply
representing a general relationship are possible as well as informally labelled
links and specific links carrying formal semantics.

Deliverable 1.2 Version 1.0 37

Nepomuk 15.01.2008

iMapping:
a graphical approach to semi-structured knowledge modelling

 This is an iMap
 about iMapping

 This is an
 annotationauthor of

works at

iMapping Examples

Nepomuk
Semantic MediaWiki

Projects

Max

Denny

Markus

Heiko

Goals

Partners

Nepomuk WorkPackages

WP4

Search

WP2

Application Integration

WP3

Processes

WP5

2p2

WP6

Architecture

WP++

Case Studies

Visualisation / UI

WP1

WP1 members

Knowledge Articulation

FZI

Andreas Abecker

Max Völkel Heiko Haller

KTH

Yngve Sundblad

Bosse Westerlund

Rosa Gutjohnsdottir
Semantic Wiki

Max Völkel

Conceptual
data Structures

Heiko Haller

MAyG
iMapping

Mouse

HouseDog CatDaddyMum Charly

FarmFarmerBulldozerHorseSpider Pig

OfficeComputer PrinterPapers Boss

BuildingsStable

search-filter Type: Animal

MouseDog Cat

HorseSpider

iMapping Search

iMapping Examples

Levels Of Detail

Hide & Progressive Disclosure

Focus & Context

iMapping Design Principles

Visual Information Seeking Mantra

• overview first• zoom and filter• details on demand

7 Tasks of Information Visualisation

details-on-demand

overviewzoomfilter

relatehistoryextract

iMapping related work

Mapping Techniques

Mind-MapsConcept Maps

Spatial Hypertext

Knowledge Maps

other methods etc ...

Literature

Designing the User Interface

The Eyes Have It:

Beyond the Plane

Usability HeuristicsZoomable User Interfaces

tools

Using Vision to Think

Website

Levels
Of

Detail

Hide &
Progressive
Disclosure

Focus &
Context

iMapping Design Principles

Visual Information
Seeking Mantra

• overview first

• zoom and filter

• details on demand

7 Tasks of
Information
Visualisation

details-on-demand

overview

zoom

filter

relate

history

extract

iMapping related work

Mapping Techniques

Mind-Maps

Concept Maps

Spatial Hypertext

Knowledge Maps

other methods etc ...

Literature

Designing the User Interface

The Eyes Have It:

Beyond the Plane

Usability Heuristics

Zoomable User Interfaces

tools

Using Vision to Think

iMapping

CS-TR-3665 July 1996
ISR-TR-96-66

The Eyes Have It:
A Task by Data Type Taxonomy

for Information Visualizations

Ben Shneiderman
Department of Computer Science

Human-Computer Interaction Laboratory,
and Institute for Systems Research

University of Maryland, College Park, Maryland 20742 USA
ben@cs.umd.edu, http://www/cs.umd.edu/projects/hcil/

Abstract
 A useful starting point for designing advanced graphical user interfaces is the Visual Information-
Seeking Mantra: Overview first, zoom and filter, then details-on-demand. But this is only a starting point
in trying to understand the rich and varied set of information visualizations that have been proposed in
recent years. This paper offers a task by data type taxonomy with seven data types (1-, 2-, 3-dimensional
data, temporal and multi-dimensional data, and tree and network data) and seven tasks (overview, zoom,
filter, details-on-demand, relate, history, and extract).

!"#$%!&$
!"#$%&$'&(%$#%$)$*&)(+,$-)(&.%/01.(2.0*3)(/4(&$'&(/%(/&.$%(5$,+-
+*&$%2/**$2&$,(6"(%$7-&+/*)8(&"#+2-77"(*-9+1-&+/*-7(7+*3):(;.$
)+5+7-%+&"(&/(3*/<7$,1$(%$#%$)$*&-&+/*)()02.(-)(4%-5$)(-*,
)$5-*&+2(*$&)(.-)(7$,(&/(502.($44/%&(+*(0)+*1(."#$%&$'&()")&$5)(4/%
3*/<7$,1$(%$#%$)$*&-&+/*(-*,($'&$*,+*1(."#$%&$'&()")&$5)(&/
5-3$(&.$5(-67$(&/($'#%$))(5/%$:(;.+)(</%3(.-)(5$&(<+&.(7+5+&$,
)022$))(,0$(&/(,+44+207&+$)(+*270,+*1(&.$(&-2+&(-*,()+&0-&$,(*-&0%$(/4
502.(3*/<7$,1$:(=*)&$-,(/4(9+$<+*1(3*/<7$,1$($'#%$))+/*(-)(-*
-77(-&(/*2$($9$*&8(<$(9+$<(+&(-)(-(2/*)&%02&+9$(#%/2$))8(+:$:
3*/<7$,1$(60+7,+*1:(;.$(>+)0-7(?*/<7$,1$(@0+7,$%(A>?@B(7$&)
0)$%)($'#%$))(2/*&$*&(9+-(9+)0-7(/%(&$'&0-7(5$-*)(-*,(7-&$%
4/%5-7+C$(&.-&(2/*&$*&(+*(&.$(4/%5(/4(-&&%+60&$)8(9-70$)8(&"#$)8(-*,
%$7-&+/*):(>?@(#%/-2&+9$7"()0##/%&)(&.+)(#%/2$))(&.%/01.(-()$&(/4
)011$)&+/*(-1$*&)(<./)$(+*&$%-2&+/*(<+&.(&.(0)%(+)(5$,+-&$,(6"
&.$()011$)&+/*(5-*-1$%:(D%$7+5+*-%"($9-70-&+/*(/4(&.$()011$)&+/*
5-*-1$%(-*,()011$)&+/*(-1$*&)("+$7,)(#/)+&+9$(%$)07&)(60&(40%&.$%
2/*4+%5)(&.-&(&.$%$(+)(*/(E)+79$%(6077$&F(4/%(3*/<7$,1$($*1+*$$%+*1
GG()$5-*&+2($'#%$))+/*(+)(5/)&(7+3$7"(&/(.-##$*(,0%+*18(-*,(+)
,%+9$*(6"8(&-)3(#$%4/%5-*2$:

&'()*+,-)./'01/#234)5(/6).5,-7(+,.
!:H:I(J809+,:'(-+0/80(),9'5)./'01/;,).)0('(-+0KL(!"#$%&$'&M
!"#$%5$,+-(G(!"#$%&'#&("')*+()'"+%))(')

<)0),'=/$),:.
N$)+1*8(!05-*(O-2&/%)

>)?@+,1.
)#-&+-7(."#$%&$'&8()011$)&+/*G6-)$,(+*&$%4-2$)8(5+'$,G+*+&+-&+9$
,+-7/1)8(9+)0-7(7-*10-1$8()#-&+-7(#-%)$%8(+*2%5*&-7(4/%5-7+C-&+/*

AB//CD;E%EF/!G6/>GHIJE6<E/

%E;%E#EG$!$8HG
!"#$%&$'&(.-)(7/*1(6$$*(%$2/1*+C$,(-)(-(4/%5(/4(3*/<7$,1$
%$#%$)$*&-&+/*($5#.-)+C+*1(+*&$%,/205$*&(%$7-&+/*):(=*(-,,+&+/*(&/
5/%$(2/55/*(#-1$G)+C$,(*/,$)(4/0*,(+*()")&$5)(7+3$(?PQ(JRK
-*,(&.$(S$68(-(*056$%(/4()")&$5)(.-9$(+*270,$,()5-77$%G)+C$,
+*4/%5-&+/*(2.0*3)(&/(%$#%$)$*&(4+*$%G1%-+*$,(%$7-&+/*):(T-%7"
$'-5#7$)(+*270,$(&.$(%$#%$)$*&-&+/*(/4(Q$-%7$U)(V.+*$)$(W//5
-%105$*&(+*(T027+,(JXYK8(;/075+*G)&%02&0%$,(-*-7")$)(+*

Z/&$V-%,)(JR[K8(-*,(=@=QG6-)$,(,$)+1*(%-&+/*-7$(+*(P+3%/#7+)(J\\K

-*,(1=@=Q(JIK:

;.+)(4+%)&(%/0*,(/4(%$#%$)$*&-&+/*-7(."#$%&$'&(.$7#$,(5/&+9-&$(&.$

,$) +1* (/4 (- (*056$% (/4 ()") &$5)(<+ &. (5/%$ ($'#%$)) +9$

%$#%$)$*&-&+/*):(=NT(JRHK($'&$*,$,(Z/&$V-%,)(&/(+*270,$(-

&',-.!&'+#!"/(4/%(,$4+*+*1(&"#$)(&.%/01.(&.$(+*.$%+&-*2$(/4

-&&%+60&$)(-*,(6$.-9+/%(<+&.+*(&.$(2/*&$'&(/4(+*)&%02&+/*-7(,$)+1*:

QDW=Z;(JXK8(<+&.(-*(-+5(&/($*.-*2+*1(60)+*$))(#%-2&+2$8(0)$,

Q5-77;-73(5$&./,)(-&&-2.$,(&/(-(4%-5$G6-)$,(%$#%$)$*&-&+/*(&/

+*&$1%-&$(."#$%5$,+-8()$5-*&+2(*$&</%38(-*,($'#$%&()")&$5

%$#%$)$*&-&+/*):(V/*2/%,$(JRRK()0##/%&$,(3*/<7$,1$($*1+*$$%+*1

&.%/01.(-(%$#%$)$*&-&+/*(+*(<.+2.(%$7-&+/*)(6$&<$$*(*/,$)(2/07,

6$(2/*)&%-+*$,:(?*/<7$,1$()&%02&0%+*1(<-)(&.$(1/-7(/4(]^0-*$&

JR_K8(<.+2.(-77/<$,(0)$%)(&/(,$4+*$(%$#%$)$*&-&+/*-7()2.$5-)(&.-&

+*270,$,(/6`$2&(-*,(%$7-&+/*(&"#$)8(-&&%+60&$)8(-*,(2/*)&%-+*&):(;.$

-6/9$(%$#%$)$*&-&+/*)($5#.-)+C$(&.$($'#%$))+/*(/4(,$27-%-&+9$

3*/<7$,1$:(D.+,+-)(J\XK(56,,$,(#%/2$,0%-7(3*/<7$,1$(+*(&.$

."#$%&$'&(%$#%$)$*&-&+/*8()02.(-)(+*4$%$*2$)(6-)$,(/*(4/%<-%,G

2.-+*+*18(6"(-77/<+*1(*/,$)(+*(+&)(."#$%6-)$(&/(2/*&-+*(-()&/%$,

^0$%":(]77(/4(&.$)$()")&$5)(67$*,$,(%$#%$)$*&-&+/*)(4%/5

."#$%&$'&(-*,(-%&+4+2+-7(+*&$77+1$*2$:(O0%&.$%(,+)20))+/*)(/4(&.$

,$)+1*(-*,(0)$(/4()02.()")&$5)(-%$(4/0*,(+*(JRaK8(JXRK8(-*,(J\HK:

S/%3(/*(3*/<7$,1$G6-)$,(."#$%&$'&(6$2-5$(7$))(2/55/*(<+&.

&.$($5$%1$*2$(/4(&.$(S$6:(b*$(%$-)/*(+)(&.-&(&.$(S$6U)(#%+5-%"

%$#%$)$*&-&+/*)8($:1:(!;Pc8(,+,(*/&(+*270,(0)407(4-2+7+&+$)(4/%

5/%$(4/%5-7(%$#%$)$*&-&+/*:(P/%$(%$2$*&()&-*,-%,)(.-9$(2.-*1$,

&.-&:(=*,$$,8(5-*"(/4(&.$(-6/9$(&.5)(-%$(6$+*1(%$9+)+&$,(+*

,+)20))+/*)(/4(&.$(EQ$5-*&+2(S$6:F(dPc(+*270,$)(5-*"(/4(&.$

2.-%-2&$%+)&+2)(/4($-%7+$%($44/%&)(<+&.(%$1-%,)(&/(+*&$1%-&+*1(4%-5$G

6-)$,(%$#%$)$*&- & +/*) (-*,(."#$% &$'& : (c+3$(]^0-*$& U)

%$#%$)$*&-&+/*8(+&(+)(-(5$&-G7-*10-1$(&.-&(2-*(6$(0)$,(&/($*2/,$

)#$2+4+2(3*/<7$,1$(%$#%$)$*&-&+/*(7-*10-1$):(;.$(W$)/0%2$

N$)2%+#&+/*(O%-5$</%3(AWNOB(-*,(N]Pceb=c(4/77/<(&.$

3*/<7$,1$(+*&$%2.-*1$(4/%5-&(A?=OB(-*,(3*/<7$,1$(^0$%"(-*,

5-*+#07-&+/*(7-*10-1$(A?fPcB(-)()&-*,-%,)(4/%().-%+*1(2/55/*

#%/2$,0%-7(%$#%$)$*&-&+/*)(/4(3*/<7$,1$:

;.$)$(-%$(-77(%$#%$)$*&-&+/*)(,$)+1*$,(&/(-+,(+*(&.(0)(-*,().-%+*1

/4(3*/<7$,1$(/*2$(+&(+)(%$#%$)$*&$,8(60&(./<(&.$(3*/<7$,1$(+)

E-0&./%$,F(+*(&.$(4+%)&(#7-2$(+)(*/&(2/*)+,$%$,:(b0%(4/20)(+)(/*(./<

&/()0##/%&(&.+)($'#%$))+/*8(<.+2.(<$(2-77(0123.'/4'+5(%./%146(;.+)

+)(-(2/*)&%02&+9$(-2&+9+&"(<.$%$(&.$(-0&./%U)(/<*(3*/<7$,1$(+)

+5#-2&$,(6"(&.$($'#%$))+/*(#%/2$)):(@$)+,$)(#%/9+,+*1(9+)0-78

)#-&+-7(-*,(&$'&0-7(5$-*)(/4(2/550*+2-&+/*8(<$(-%$(60+7,+*1

#%/-2&+9$()0##/%&(4/%(&.+)(#%/2$)):

;.$(*$'&()$2&+/*(,+)20))$)(,+44+207&+$)(<+&.(3*/<7$,1$

%$#%$)$*&-&+/*(-*,(+5#7+2-&+/*)(4/%(,$9$7/#+*1(&//7)(&/(.$7#

!"#$%&'()*+$,,"%-

.%/01"23"*45'12'%3*'%*!,$&'$1*+6,"7&"8&

!"#$%&'()*+#$,&-.&/)0(#12&/33"1,&4"115#+&/#233",&6#371)&68)1(,&9#:(;&<%%#*1==)
>1*#"5+1$5&3?&@3+*;51"&'0)1$01&#$=&@1$51"&?3"&5(1&'5;=A&3?&>):)5#2&B)C"#")18

D1E#8&<F/&G$)H1"8)5A

@3221:1&'5#5)3$,&DI&JJKLMNMOOP&G'<

QO&RJR&KSP&MPOS

8()*+#$T08.5#+;.1=;

D$%5+))+/*(&/(5-3$(,+1+&-7(/%(.-%,(2/#+$)(/4(-77(/%(#-%&(/4(&.+)(</%3(4/%

#$%)/*-7(/%(27-))%//5(0)$(+)(1%-*&$,(<+&./0&(4$$(#%/9+,$,(&.-&(2/#+$)(-%$

/&(5-,$(/%(,+)&%+60&$,(4/%(#%/4+&(/%(2/55$%2+-7(-,9-&-1$(-*,(&.-&(2/#+$)

6$-%(&.+)(*/&+2$(-*,(&.$(4077(2+&-&+/*(/*(&.$(4+%)&(#-1$:(;/(2/#"(/&.$%<+)$8(/%

%$#067+).8(&/(#/)&(/*()$%9$%)(/%(&/(%$,+)&%+60&$(&/(7+)&)8(%$^0+%$)(#%+/%

)#$2+4+2(#$%5+))+/*(-*,M/%(-(4$$:(

789:;8(g0*$(RRGRH8(\hh\8(V/77$1$(D-%38(P-%"7-*,8(iQ]:(

V/#"%+1.&(\hh\(]VP(RGH[RRXGIYYGhMh\Mhhha:::jH:hh:(

25

!"#$%!&$
!"#$%&$'&(%$#%$)$*&)(+,$-)(&.%/01.(2.0*3)(/4(&$'&(/%(/&.$%(5$,+-
+*&$%2/**$2&$,(6"(%$7-&+/*)8(&"#+2-77"(*-9+1-&+/*-7(7+*3):(;.$
)+5+7-%+&"(&/(3*/<7$,1$(%$#%$)$*&-&+/*)()02.(-)(4%-5$)(-*,
)$5-*&+2(*$&)(.-)(7$,(&/(502.($44/%&(+*(0)+*1(."#$%&$'&()")&$5)(4/%
3*/<7$,1$(%$#%$)$*&-&+/*(-*,($'&$*,+*1(."#$%&$'&()")&$5)(&/
5-3$(&.$5(-67$(&/($'#%$))(5/%$:(;.+)(</%3(.-)(5$&(<+&.(7+5+&$,
)022$))(,0$(&/(,+44+207&+$)(+*270,+*1(&.$(&-2+&(-*,()+&0-&$,(*-&0%$(/4
502.(3*/<7$,1$:(=*)&$-,(/4(9+$<+*1(3*/<7$,1$($'#%$))+/*(-)(-*
-77(-&(/*2$($9$*&8(<$(9+$<(+&(-)(-(2/*)&%02&+9$(#%/2$))8(+:$:
3*/<7$,1$(60+7,+*1:(;.$(>+)0-7(?*/<7$,1$(@0+7,$%(A>?@B(7$&)
0)$%)($'#%$))(2/*&$*&(9+-(9+)0-7(/%(&$'&0-7(5$-*)(-*,(7-&$%
4/%5-7+C$(&.-&(2/*&$*&(+*(&.$(4/%5(/4(-&&%+60&$)8(9-70$)8(&"#$)8(-*,
%$7-&+/*):(>?@(#%/-2&+9$7"()0##/%&)(&.+)(#%/2$))(&.%/01.(-()$&(/4
)011$)&+/*(-1$*&)(<./)$(+*&$%-2&+/*(<+&.(&.(0)%(+)(5$,+-&$,(6"
&.$()011$)&+/*(5-*-1$%:(D%$7+5+*-%"($9-70-&+/*(/4(&.$()011$)&+/*
5-*-1$%(-*,()011$)&+/*(-1$*&)("+$7,)(#/)+&+9$(%$)07&)(60&(40%&.$%
2/*4+%5)(&.-&(&.$%$(+)(*/(E)+79$%(6077$&F(4/%(3*/<7$,1$($*1+*$$%+*1
GG()$5-*&+2($'#%$))+/*(+)(5/)&(7+3$7"(&/(.-##$*(,0%+*18(-*,(+)
,%+9$*(6"8(&-)3(#$%4/%5-*2$:

&'()*+,-)./'01/#234)5(/6).5,-7(+,.
!:H:I(J809+,:'(-+0/80(),9'5)./'01/;,).)0('(-+0KL(!"#$%&$'&M
!"#$%5$,+-(G(!"#$%&'#&("')*+()'"+%))(')

<)0),'=/$),:.
N$)+1*8(!05-*(O-2&/%)

>)?@+,1.
)#-&+-7(."#$%&$'&8()011$)&+/*G6-)$,(+*&$%4-2$)8(5+'$,G+*+&+-&+9$
,+-7/1)8(9+)0-7(7-*10-1$8()#-&+-7(#-%)$%8(+*2%5*&-7(4/%5-7+C-&+/*

AB//CD;E%EF/!G6/>GHIJE6<E/

%E;%E#EG$!$8HG
!"#$%&$'&(.-)(7/*1(6$$*(%$2/1*+C$,(-)(-(4/%5(/4(3*/<7$,1$
%$#%$)$*&-&+/*($5#.-)+C+*1(+*&$%,/205$*&(%$7-&+/*):(=*(-,,+&+/*(&/
5/%$(2/55/*(#-1$G)+C$,(*/,$)(4/0*,(+*()")&$5)(7+3$(?PQ(JRK
-*,(&.$(S$68(-(*056$%(/4()")&$5)(.-9$(+*270,$,()5-77$%G)+C$,
+*4/%5-&+/*(2.0*3)(&/(%$#%$)$*&(4+*$%G1%-+*$,(%$7-&+/*):(T-%7"
$'-5#7$)(+*270,$(&.$(%$#%$)$*&-&+/*(/4(Q$-%7$U)(V.+*$)$(W//5
-%105$*&(+*(T027+,(JXYK8(;/075+*G)&%02&0%$,(-*-7")$)(+*

Z/&$V-%,)(JR[K8(-*,(=@=QG6-)$,(,$)+1*(%-&+/*-7$(+*(P+3%/#7+)(J\\K

-*,(1=@=Q(JIK:

;.+)(4+%)&(%/0*,(/4(%$#%$)$*&-&+/*-7(."#$%&$'&(.$7#$,(5/&+9-&$(&.$

,$) +1* (/4 (- (*056$% (/4 ()") &$5)(<+ &. (5/%$ ($'#%$)) +9$

%$#%$)$*&-&+/*):(=NT(JRHK($'&$*,$,(Z/&$V-%,)(&/(+*270,$(-

&',-.!&'+#!"/(4/%(,$4+*+*1(&"#$)(&.%/01.(&.$(+*.$%+&-*2$(/4

-&&%+60&$)(-*,(6$.-9+/%(<+&.+*(&.$(2/*&$'&(/4(+*)&%02&+/*-7(,$)+1*:

QDW=Z;(JXK8(<+&.(-*(-+5(&/($*.-*2+*1(60)+*$))(#%-2&+2$8(0)$,

Q5-77;-73(5$&./,)(-&&-2.$,(&/(-(4%-5$G6-)$,(%$#%$)$*&-&+/*(&/

+*&$1%-&$(."#$%5$,+-8()$5-*&+2(*$&</%38(-*,($'#$%&()")&$5

%$#%$)$*&-&+/*):(V/*2/%,$(JRRK()0##/%&$,(3*/<7$,1$($*1+*$$%+*1

&.%/01.(-(%$#%$)$*&-&+/*(+*(<.+2.(%$7-&+/*)(6$&<$$*(*/,$)(2/07,

6$(2/*)&%-+*$,:(?*/<7$,1$()&%02&0%+*1(<-)(&.$(1/-7(/4(]^0-*$&

JR_K8(<.+2.(-77/<$,(0)$%)(&/(,$4+*$(%$#%$)$*&-&+/*-7()2.$5-)(&.-&

+*270,$,(/6`$2&(-*,(%$7-&+/*(&"#$)8(-&&%+60&$)8(-*,(2/*)&%-+*&):(;.$

-6/9$(%$#%$)$*&-&+/*)($5#.-)+C$(&.$($'#%$))+/*(/4(,$27-%-&+9$

3*/<7$,1$:(D.+,+-)(J\XK(56,,$,(#%/2$,0%-7(3*/<7$,1$(+*(&.$

."#$%&$'&(%$#%$)$*&-&+/*8()02.(-)(+*4$%$*2$)(6-)$,(/*(4/%<-%,G

2.-+*+*18(6"(-77/<+*1(*/,$)(+*(+&)(."#$%6-)$(&/(2/*&-+*(-()&/%$,

^0$%":(]77(/4(&.$)$()")&$5)(67$*,$,(%$#%$)$*&-&+/*)(4%/5

."#$%&$'&(-*,(-%&+4+2+-7(+*&$77+1$*2$:(O0%&.$%(,+)20))+/*)(/4(&.$

,$)+1*(-*,(0)$(/4()02.()")&$5)(-%$(4/0*,(+*(JRaK8(JXRK8(-*,(J\HK:

S/%3(/*(3*/<7$,1$G6-)$,(."#$%&$'&(6$2-5$(7$))(2/55/*(<+&.

&.$($5$%1$*2$(/4(&.$(S$6:(b*$(%$-)/*(+)(&.-&(&.$(S$6U)(#%+5-%"

%$#%$)$*&-&+/*)8($:1:(!;Pc8(,+,(*/&(+*270,(0)407(4-2+7+&+$)(4/%

5/%$(4/%5-7(%$#%$)$*&-&+/*:(P/%$(%$2$*&()&-*,-%,)(.-9$(2.-*1$,

&.-&:(=*,$$,8(5-*"(/4(&.$(-6/9$(&.5)(-%$(6$+*1(%$9+)+&$,(+*

,+)20))+/*)(/4(&.$(EQ$5-*&+2(S$6:F(dPc(+*270,$)(5-*"(/4(&.$

2.-%-2&$%+)&+2)(/4($-%7+$%($44/%&)(<+&.(%$1-%,)(&/(+*&$1%-&+*1(4%-5$G

6-)$,(%$#%$)$*&- & +/*) (-*,(."#$% &$'& : (c+3$(]^0-*$& U)

%$#%$)$*&-&+/*8(+&(+)(-(5$&-G7-*10-1$(&.-&(2-*(6$(0)$,(&/($*2/,$

)#$2+4+2(3*/<7$,1$(%$#%$)$*&-&+/*(7-*10-1$):(;.$(W$)/0%2$

N$)2%+#&+/*(O%-5$</%3(AWNOB(-*,(N]Pceb=c(4/77/<(&.$

3*/<7$,1$(+*&$%2.-*1$(4/%5-&(A?=OB(-*,(3*/<7$,1$(^0$%"(-*,

5-*+#07-&+/*(7-*10-1$(A?fPcB(-)()&-*,-%,)(4/%().-%+*1(2/55/*

#%/2$,0%-7(%$#%$)$*&-&+/*)(/4(3*/<7$,1$:

;.$)$(-%$(-77(%$#%$)$*&-&+/*)(,$)+1*$,(&/(-+,(+*(&.(0)(-*,().-%+*1

/4(3*/<7$,1$(/*2$(+&(+)(%$#%$)$*&$,8(60&(./<(&.$(3*/<7$,1$(+)

E-0&./%$,F(+*(&.$(4+%)&(#7-2$(+)(*/&(2/*)+,$%$,:(b0%(4/20)(+)(/*(./<

&/()0##/%&(&.+)($'#%$))+/*8(<.+2.(<$(2-77(0123.'/4'+5(%./%146(;.+)

+)(-(2/*)&%02&+9$(-2&+9+&"(<.$%$(&.$(-0&./%U)(/<*(3*/<7$,1$(+)

+5#-2&$,(6"(&.$($'#%$))+/*(#%/2$)):(@$)+,$)(#%/9+,+*1(9+)0-78

)#-&+-7(-*,(&$'&0-7(5$-*)(/4(2/550*+2-&+/*8(<$(-%$(60+7,+*1

#%/-2&+9$()0##/%&(4/%(&.+)(#%/2$)):

;.$(*$'&()$2&+/*(,+)20))$)(,+44+207&+$)(<+&.(3*/<7$,1$

%$#%$)$*&-&+/*(-*,(+5#7+2-&+/*)(4/%(,$9$7/#+*1(&//7)(&/(.$7#

!"#$%&'()*+$,,"%-

.%/01"23"*45'12'%3*'%*!,$&'$1*+6,"7&"8&

!"#$%&'()*+#$,&-.&/)0(#12&/33"1,&4"115#+&/#233",&6#371)&68)1(,&9#:(;&<%%#*1==)
>1*#"5+1$5&3?&@3+*;51"&'0)1$01&#$=&@1$51"&?3"&5(1&'5;=A&3?&>):)5#2&B)C"#")18

D1E#8&<F/&G$)H1"8)5A

@3221:1&'5#5)3$,&DI&JJKLMNMOOP&G'<

QO&RJR&KSP&MPOS

8()*+#$T08.5#+;.1=;

D$%5+))+/*(&/(5-3$(,+1+&-7(/%(.-%,(2/#+$)(/4(-77(/%(#-%&(/4(&.+)(</%3(4/%

#$%)/*-7(/%(27-))%//5(0)$(+)(1%-*&$,(<+&./0&(4$$(#%/9+,$,(&.-&(2/#+$)(-%$

/&(5-,$(/%(,+)&%+60&$,(4/%(#%/4+&(/%(2/55$%2+-7(-,9-&-1$(-*,(&.-&(2/#+$)

6$-%(&.+)(*/&+2$(-*,(&.$(4077(2+&-&+/*(/*(&.$(4+%)&(#-1$:(;/(2/#"(/&.$%<+)$8(/%

%$#067+).8(&/(#/)&(/*()$%9$%)(/%(&/(%$,+)&%+60&$(&/(7+)&)8(%$^0+%$)(#%+/%

)#$2+4+2(#$%5+))+/*(-*,M/%(-(4$$:(

789:;8(g0*$(RRGRH8(\hh\8(V/77$1$(D-%38(P-%"7-*,8(iQ]:(

V/#"%+1.&(\hh\(]VP(RGH[RRXGIYYGhMh\Mhhha:::jH:hh:(

25

Toolkit Design for
Interactive Structured Graphics

Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer

Abstract—In this paper, we analyze toolkit designs for building graphical applications with rich user interfaces, comparing polylithic

and monolithic toolkit-based solutions. Polylithic toolkits encourage extension by composition and follow a design philosophy similar to

3D scene graphs supported by toolkits including Java3D and OpenInventor. Monolithic toolkits, on the other hand, encourage
extension by inheritance, and are more akin to 2D Graphical User Interface toolkits such as Swing or MFC. We describe Jazz (a

polylithic toolkit) and Piccolo (a monolithic toolkit), each of which we built to support interactive 2D structured graphics applications in
general, and Zoomable User Interface applications in particular. We examine the trade offs of each approach in terms of performance,

memory requirements, and programmability. We conclude that a polylithic approach is most suitable for toolkit builders, visual design
software where code is automatically generated, and application builders where there is much customization of the toolkit.

Correspondingly, we find that monolithic approaches appear to be best for application builders where there is not much customization
of the toolkit.

Index Terms—Monolithic toolkits, polylithic toolkits, object-oriented design, composition, inheritance, Zoomable User Interfaces
(ZUIs), animation, structured graphics, Graphical User Interfaces (GUIs), Pad++, Jazz, Piccolo.

!

1 INTRODUCTION

APPLICATION developers rely on User Interface (UI)
toolkits such as Microsoft’s MFC and .NET Windows

Forms, and Sun’s Swing and AWT to create visual user
interfaces. However, while these toolkits are effective for
traditional widget-based applications, they fall short when
the developer needs to build a new kind of user interface
component-one that is not bundled with the toolkit. These
components might be simple widgets, such as a range slider
or more complex objects, including interactive graphs and
charts, sophisticated data displays, timeline editors, zoom-
able user interfaces, or fisheye visualizations.

Developing application-specific components usually
requires significant quantities of custom code to manage a
range of features, many of which are similar from one
component to the next. These include managing which
areas of the window need repainting (called region manage-
ment), repainting those regions efficiently, sending events to
the internal object that is under the mouse pointer,
managing multiple views, and integrating with the under-
lying windowing system.

Writing this code is cumbersome, yet most standard 2D
UI toolkits provide only rudimentary support for creating
custom components—typically, just a set of methods for
drawing 2D shapes and methods for listening to low-level
events.

Some toolkits such as Tcl/Tk [19] include a “structured
canvas” component, which supports basic structured

graphics. These canvases typically contain a collection of
graphical 2D objects, including shapes, text, and images.
These components could in principal be used to create
application-specific components. However, structured can-
vases are designed primarily to display graphical data, not
to support new kinds of interaction components. Thus, for
example, they usually do not allow the application to
extend the set of objects that can be placed within the
canvas. We have found that many developers bypass these
structured canvas components and follow a “roll-your-
own” design philosophy, rewriting large quantities of code
and increasing engineering overhead, particularly in terms
of reliability and programmability. There are also commer-
cial toolkits available such as Flash [6] and Adobe SVG
Viewer [2]. But, these approaches are often difficult to
extend and integrate into an application.

We believe future user interface toolkits must address
these problems by providing higher-level libraries for
supporting custom interface components. However, there
is still an open question regarding which design philosophy
to adopt for these higher-level toolkits. The core issue we
address here is whether toolkits should be designed so that
the inevitable complexity and extension of the components
are supported primarily through composition (which we
call polylithic) or inheritance (which we call monolithic).

In this paper, we consider these two design approaches
for interactive structured graphics toolkits through two
toolkits we built: Jazz,1 a polylithic toolkit; and Piccolo,2 a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004 1

. The authors are with the Human-Computer Interaction Laboratory,
Institute for Advanced Computer Studies, Computer Science Department,
University of Maryland, College Park, MD 20742.
E-mail: {bederson, jesse, meyer}@cs.umd.edu.

Manuscript received 16 Sept. 2003; accepted 16 Mar. 2004.
Recommended for acceptance by D. Weiss.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0145-0903.

1. The name Jazz is not an acronym, but rather is motivated by the
music-related naming conventions that the Java Swing toolkit started. In
addition, the letter “J” signifies the Java connection, and the letter “Z”
signifies the zooming connection. Jazz is open source software according to
the Mozilla Public License, and is available at: http://www.cs.umd.edu/
hcil/jazz.

2. The name Piccolo is motivated by the music connection of Jazz and
Swing, and because it is so small (approximately one tenth the size of Jazz).
Piccolo is open source software according to the Mozilla Public License, and
is available at: http://www.cs.umd.edu/hcil/piccolo.

0098-5589/04/$20.00 ! 2004 IEEE Published by the IEEE Computer Society

Mouse

House

Dog

Cat

DaddyMum

Charly

Farm

Farmer

Bulldozer

Horse

Spider

Pig

Office

Computer

Printer

Papers

Boss

Buildings

Stable

search-filter Type: Animal

Mouse

Dog

Cat

Horse

Spider

iMapping Search

iMapping Examples

superordinate Node

new Text...

when [enter] is pressed
while editing a node,

editing is anded and a
Textcursor is set to the

position below the node -
where a new paragraph

would start.

entering text

iMapping core principles

• spatial layout

•nesting, zooming

•graphical authoring

•allow vague structures

•capture implicit semantics

•minimize cognitive overhead

•use Conceptual Data Structures

Abstract
iMapping is a technique for visually structuring information
objects. It supports the full range from informal note taking over
semi-structured personal information management to formal
knowledge models. With iMaps, users can easily go from
overview to fine-grained structures while browsing editing or
refining the knowledge base in one comprehensive view.

An iMap is comparable to a large white-board where information
items can be positioned like post-its but also nested into each
other. Spatial browsing and zooming as well as graphical editing
facilities make it easy to structure content in an intuitive way.
iMapping builds on a zooming user interface approach to
facilitate navigation and to help users maintain an overview in
the knowledge space. While a first implementation is being
developed, iMapping is still in a conceptual stage. In this paper
we describe the iMapping approach and how it tries to combine
and extend the advantages of other approaches.

Conceptual Data Structures

relation

annotation

tag

type

context/detail

subclass

part of

order

CDS is a lightweight top-level ontology about relations
that naturally occur in common knowledge artefacts.
It is designed to bridge the gap between unstructured
content like informal notes and formal semantics like
ontologies by allowing the use of vague semantics and
by subsuming arbitrary relation types under more
general ones.

MaxVölkel

ignorable PopUps

DenkWerkzeug2006_CDS [event]

DennyVrandecic

DenkWerkzeug2006_CDS [event]

participant_of

organiser_of

met_at

MaxVölkel

HeikoHaller

is developed in

display search results

Mouse

House

Dog

Cat

DaddyMum

Charly

Farm

Farmer

Bulldozer

Horse

Spider

Pig

Office

Computer

Printer

Papers

Boss

Buildings

Stable

search-filter Type: Animal

Mouse

Dog

Cat

Horse

Spider

SurroundingWikiPage

SomePeople

Rudi

Heiko

Max

NepomukProject

knows

w
orks_for

wo
rk
s_
fo
r

Max

Eyal
NepoWorkPackages

Heiko Haller

Figure 17: An iMap about iMapping – Poster presented at the Semantic Web User Interaction Workshop
(ISWC 2006)

Deliverable 1.2 Version 1.0 38

Nepomuk 15.01.2008

Annotations Annotating Items is again possible on every level of formality: with
an informal text note, tagged with another NameItem, but also using any
formal relation in the sense of semantic annotation.

Macro Structure / Facility of Inspection Inspecting the overall macro structure of
a topic or subtopic in a way that enables the inspection of the topic by
grasping an overview before drilling down into the details is facilitated by the
iMapping approach in a unique way through its deep-zooming facility.

Hyperlinks To be able to explicitly relate Items that are not visually close together,
in-line Hyperlinks can be used as well as generic CDS statements e.g. entered
with the QuiKey tool described in Sec. 4.2.

Easy Edit Imposing only the least necessary cognitive overhead onto the user is
one of the highest design goals of the iMapping tool. This reflects e.g.
in items being able to be created by simply clicking and writing anywhere
without needing further specifications of type, meaning or file name. Texts
can be edited in WYSIWYG and items can be restructured by drag-and-drop.
Whether this is intuitive enough, later user studies will show.

Integration of Detail and Context Navigating complex information environments
often leads to a loss of orientation, because when drilling down into detailed
views of a matter, context information often gets out of reach. To aid
mental integration of details and context, the iMapping tool provides facilities
to easily zoom out of and back into a spot, like taking a step back from
some detail work to become aware of the surroundings. Additional Levels-
Of-Detail approaches like to semantic zooming18, or Fisheye Views (Furnas
1986) integrate well with the iMapping approach. However it is unclear how
much of that we will be able to implement within the nepomuk project.

A number of other visual mapping approaches and tools have been evaluated with
these criteria (Haller 2003, Richter, Völkel & Haller 2005) and to the best of our
knowledge, there is not a single one that fulfils all of them.

Ben Shneiderman’s Seven Tasks of Visual Information Environments, first
published by Shneiderman (1996), are well described by Shneiderman & Plaisant
(2004). Here is how the iMapping Client supports these tasks.

Overview To gain overview, a user can always just zoom out to see the context of
where she has been before. Zooming back in right to where she was before
is especially easy because the ’way out’ is tracked.

Zoom Zooming is the native browsing method for iMaps.

Filter Several ways of filtering iMapping content to reduce complexity are being
discussed. We are currently experimenting with a flash-based prototype.

Details-On-Demand This criterion is met a) by the general zooming approach, b)
by the ability to collapse/expand every item on demand and c) by showing
Links only on demand to reduce visual clutter, unless they are explicitly made
permanent.

Relate To interrelate information items is the core business of semantic knowledge
management. This is supported in several ways like dragging items into each
other, drawing Links between items or interlinking even remote items with
the QuiKey Tool described in Sec. 4.2.

18“With a conventional geometric zoom all objects change only their size; with semantic zoom
they can additionally change shape, details (not merely size of existing details) or, indeed, their
very presence in the display, with objects appearing/disappearing according to the context of the
map at hand” (Boulos 2003), for more definitions see InfoVis Wiki (n.d.).

Deliverable 1.2 Version 1.0 39

Nepomuk 15.01.2008

History For the iMapping client, we have chosen a transactional design that allows
for undo and history functionality. However – since this is not the main focus
of this research prototype – it has low implementation priority.

Extract With extracting, Shneiderman means the ability to isolate a subset of
items which is to be handled separately or distributed independently. The
highly modularised nature of iMaps, allows this conceptionally. In what way
the actual sharing will be supported in nepomuk is to be decided.

4.1.2 iMapping GUI

 CID-Meeting 2007-11-22

new objectives

not really new

Lorem ipsum dolor sit
amet, consectetuer
adipiscing elit. Etiam id
erat at tellus tincidunt
mollis.

meeting room

projector

Other Topics

foo

bar

This

that

Belfast

≡

Belly
Only visible if
iMapItem is
expanded.

Content Area
flowing text, soft-
breaking at specified
width

Expand button
indicates and switches
expansion status

Throat button
toggles Throat
expansion (invisible if
throat is empty)

Throat
all CDS:details not
explicitely contained in
Belly, lined up like letters
in flowing text.
Nonexistent if empty.

Scaling handle
drag handler for scaling
(outer) item size

resizing borders
grab any item border
for resizing (changing
aspect ratio)

Context Menu Button
visible if item is in focus.
invokes a context menu.

collapsed child items

expanded child item
with two own child
items

an annotation
(free-text)

Figure 18: Functional elements on an Item widget in the GUI

A basic text item consists of a content area and a “belly” that can be “collapsed”
away. The Belly is the area that holds all the child-items of an item. All such
child-items are CDS:details of the item. If there are additional CDS:details that
were not explicitly placed in the item’s Belly, they appear in the“Throat”(A throat
is something where things are before they reach the belly. It’s a working label –
the name might change in the future.) the throat is normally collapsed, it can be
expanded on demand. A current sketch of such a GUI-widget of an iMapping item
with some functional elements is shown in Fig. 18.

More details like e.g. on mouse and keyboard interactions can be found in the
iMapping development wiki at http://dev.imapping.info.

4.1.3 iMapping data Model

All content and the conceptual structure of an iMap is stored in CDS. Every iMap
Item represents one CDS:Item whose content it displays and every iMapping Link
represents a CDS:Statement (c. f. Figs 20 and 21).

The iMapping data model used in the iMapping back-end however is the result of
quite some discussions and refinements, since we aimed at two additional uncom-

Deliverable 1.2 Version 1.0 40

http://dev.imapping.info

Nepomuk 15.01.2008

mon goals: We wanted to

• store everything, even the visual metadata like item-positions, sizes and other
details in an explicit schema in the nepomuk rdf back-end.

• be able to model various kinds of sameness between items: a) different
iMapItems representing the same CDS:Item, because in different contexts
one might want to have completely different-looking representations of one
and the same thing. b) mirrored iMapItems: Different iMapItems in different
contexts that always look the same and ‘mirror’ each others’ changes (see
Fig. 19).

not mirrored

different
layout

mirrored mirrored

everything everything
looks the same looks the same

also also

in depth in depth

not mirrored

different layoutsame content

what
happens

inside?

different Ite
ms

(same ItemBody)

different Bodies (same CDS:Item)

same Item

different Items(same ItemBody)

same Items inside

different Bodies (same CDS:Item)

Figure 19: Mirrored Items (top) and not-mirrored items that still representing the
the same CDS:Item

For that we had to introduce an intermediate object in the model: the Item-Body.
While the Item itself carries all the ‘outer’ properties, which are unique to the item,
like its position and (outer) size, the item’s Body carries the ‘inner’ properties
that are related to the content of the item, like its text or binary content defined
by the CDS:Item it represents, but also everything concerning it’s ‘Belly’, like its
inner dimensions and references to all its children items. Like that, two ‘mirrored’
items can share the same content and layout by using the same Body while being
displayed in different places since they are still distinct items on their own.

Fig.20 shows examples for these different levels of sameness on all three modelling
levels: A and B are different items (different on all three layers) containing a
common detail item C. While on CDS-level an item with two different context-
items (parent items) poses no further complications, in an iMapping GUI this means
that the item is rendered in different locations (inside A and inside B). Because
it might be desirable to have C looking different, depending on its context (note
its different proportions in the example), the two iMapItems C.1.1 and C.2.1 have
different bodies (C.1 and C.2) that both represent the same CDS:Item C.

Item C contains the detail item D, which in our example is to look the same
everywhere. So the two Items D.1.1 and D.1.2 are mirrored because they share the
same Body D.1.

Note that in figure 20 all objects including the widgets are labelled with IDs, not
with the actual content they represent so we can refer to them in this text.

Deliverable 1.2 Version 1.0 41

Nepomuk 15.01.2008

iMap Item
Body

(labelled with ID)

CDS:item
(labelled with ID)

(labelled with
 item's ID)

widget

iMap Item

CDS:statement
(labelled with

content)

GUI-level

iMapping data model

CDS level

iMap Item
Body

(labelled with ID)

CDS:item
(labelled with

ID)

(labelled with
 item's ID)

widget

iMap Item

A.1 B.1

C.1

A

C

B

CDS:hasContext CDS:hasContext

D

CDS:hasContext

D.1

hasItemBody

A.1.1 B.1.1

C.2.1

D.1.2

C.1.1

A.1.1 B.1.1

hasItemBody

containsDetailItem containsDetailItem

hasItemBody

D.1.1

hasItemBody

C.1.1 C.2.1

hasItemBody

D.1.1

C.2

D.1.2

hasItemBody

containsDetailItem containsDetailItem

A.1.1

C.1.1

D.1.1

B.1.1

C.2.1

D.1.1

A.1

D.1

hasBody

hasParentBody

hasBody

C.1

hasBody

hasParentBody

A.1.1

C.1.1

D.1.1

A.1

hasBody

hasParentBody

hasBody

C.2

hasBody

hasParentBody

B.1.1

C.2.1

D.1.2

Figure 20: Simple example of two different items containing two mirrored items on
all three modelling levels: the CDS model (bottom), the iMapping back-end model
(middle) and how it would look in the GUI (top)

Links between iMap Items correspond to CDS:Statements between the respective
CDS:Items. However in order to specify where exactly a Link is drawn and whether
it should be visible by default or only on demand, iMapping-Links are objects on
their own in the iMapping data model. They have specific iMap Items as start and
end points.

Like this, a connection between two CDS:Items can be made explicitly visible in
one context although it might be hidden because it is irrelevant in another one19.

iMapping on CDS While this node-and-link-representation would suffice to gener-
ically display any CDS:Model as a concept-map-like graph structure, in iMapping
some types of Relations are visually represented in more individual ways:

19E.g. The statement that Dirk likes Claudia might be relevant for planning the seating arrange-
ments of the SAP Research Christmas celebration, but not wanted to be seen in an organisation
chart

Deliverable 1.2 Version 1.0 42

Nepomuk 15.01.2008

1 linksFrom
1 linksTo

hasBellyWidth:double
hasBellyHeight:double

hasBellyPreviewImage:image/png
lastFocusedDetailItem:Item 0...1

StoreBody

hasLinkVisibilityStatus:Link VisibilityStatus
 [OnDemand|Permanent|Hidden]

StoreLinkhasPositionX:double
hasPositionY:double
hasItemWidth:double
hasExpansionStatus:ExpansionStatus
 [Expanded|Collapsed|SemanticZoom]

StoreiMapItem

1

hasBody

1

hasParentBody

1

representsCdsItem

1

representsCdsStatement

cds:Content
CdsItem

cds:Content
CdsStatement

1 swcm:stmtSource

1
swcm:stmtTarget

correspond to

Figure 21: The imapping store data model, representing the mapping from visual,
iMapping-specific meta-data to an rdf-graph.

CDS:hasDetail correspond to the nesting structure of iMaps. every child-Item is
a CDS:Detail of its parent-Item.

CDS:hasType wherever possible through a suitable plug-in, items of different types
will be rendered in a different manner, suitable for the type. So e.g. an Item
representing a task could be recognised as such not by having a link pointing
at the task-type item but because of its distinct look (c. f. Fig. 22).

CDS:hasAnnotation and CDS:hasTag could also be displayed in distinct ways e.g.
as shown on the top of Fig. 17.

meet and discuss dissertation
status

due: 15. 1. 2008

get feedback from CS users

due: 20. 11. 2008

propose questionnaire

done: today

who:
with:

Don't forget to ask
Claudia about her
new cat

TaskPluggin_hha_01.graffle

Figure 22: Mock-up sketch of how a task item with sub-tasks could look like.

What could be perceived as an inconsistency between the CDS-way and the iMap-
ping way is, that we want to allow different items to look differently although
they represent the same CDS:item. E.g. The Item “Karlsruhe” in the context of a

Deliverable 1.2 Version 1.0 43

Nepomuk 15.01.2008

project should maybe have different child items (maybe“SAP Research”,“University
of Karlsruhe”) than in a cultural context (maybe“ZKM”,“Badisches Staatstheater”).
While in CDS, all four would just be details of “Karlsruhe” regardless of the wider
context, in iMap it is possible to show only some CDS:details as child-items in the
item’s belly. However to be able to access all other details as well, we added an
extra container-area that is expandable on demand and that always carries all ’left
over’ CDS:detail items that do not have a place in the belly (see Fig. 18). The
working title for this area is the“Throat”– In the UI it will later be called something
like “additional details”.

4.1.4 Implementation Status

There are currently three iMapping implementations:

Flash GUI prototype In order to test different ways of displaying relations be-
tween items, we built a GUI prototype in Flash. It has very limited functionality
but allows to switch between different modes that are distinguished by background
colour (c. f. Fig. 25).

This prototype has been analysed in an expert evaluation described in Sec. 4.1.5.

Java GUI prototype To be able to develop and test the iMapping GUI design
without being dependent on the CDS back-end that has only recently reached
the required stability, we began implementing a java prototype that omitted all
semantic features and just used a classic (hibernate) data base in its back end. Its
GUI is already based on the zooming UI framework piccolo20, that is developed by
Ben Bederson in Ben Shneiderman’s HCI group at the University of Maryland.

Basic Features realised in this prototype include

• creating text items by simply clicking anywhere and starting to type

• moving items around

• nesting items into each other (including automatic adaption of the size of
nested items)

• resizing items

• expanding and collapsing items

• zooming / panning freely and deeply

• zooming / panning exactly to any specific item

This prototype has been evaluated in usability tests described in Sec. 4.1.6. It is
depicted in Fig. 26

Full version (Java, CDS-based) This is the version that is currently being
developed and that is described in the above Sections 4.1.2 and 4.1.3. It is built
from scratch, based on the lessons learnt from both designing and evaluating the
above mentioned iMapping prototypes. The Full version now actually uses the
CDS-API described in Sec. 2.6 to store its content and rdf-reactor21 for additional
visual metadata as described in Sec. 4.1.3. Since most of the work went into the
more sophisticated back-end so far, many GUI Features are not implemented yet.
However it will provide the following features – additional to the ones listed above
for the Java GUI prototype:

20http://www.cs.umd.edu/hcil/piccolo/
21http://wiki.ontoworld.org/wiki/RDFReactor

Deliverable 1.2 Version 1.0 44

http://wiki.ontoworld.org/wiki/RDFReactor

Nepomuk 15.01.2008

• Content and structures reflected in CDS

• drawing and typing arbitrary links between items

• scaling items

• additional details area a.k.a. the ‘throat’

• rich text editing

• removing / erasing items

• mirrored items

• task-items representing task-objects (c. f. Grebner, Ong, Riss, Brunzel, Bernardi
& Roth-Berghofer (2006), Fig. 22)

4.1.5 Expert Evaluation (Flash GUI Prototype)

With the method described in Sec. 3.4.1, we also tested an iMapping prototype
realised in Adobe Flash. The purpose of the iMapping prototype that we tested is
very limited compared to the vision for the iMapping system under development.
It was its purpose to test five different ways to show relations between items. The
different versions of this prototype are distinguished with colours: yellow, orange,
red, green and blue. We focused the evaluation on these five ways. We also decided
that all the NEPOMUK personas would be relevant for the prototype, but during
the evaluation we focused on Dirk and Claudia.

The prototype version tested is iMapping Flash Prototype 5 which is available
online at http://proto5.flash.imapping.info.

High-Level Results Users in the different case studies are asking for a better
way to browse and search for information, as well as to see the connections be-
tween different resources, in their knowledge base and this is what the iMapping
prototype is aiming to provide. It is very good that the iMapping prototype allows
for alternative ways to browse the knowledge base. This is exactly what we ob-
served during our field-studies. People behave differently and use their computer
in different ways and the software we develop should therefore allow for alternative
ways of interaction. It is also positive that it is easy to get an overview and focus
on details iMapping with the help of the zooming functionality.

Recommended improvements are:

• Easy configurability of the way to interact: It should be easy to configure
how you want to interact with the application; e.g. by clicking, mouse-over,
etc. The user should also feel secure to make mistakes to enhance the chance
of finding an efficient way of interacting.

• Arbitrary (nested) relations: The user can put items inside other items in
an arbitrary way which is a different solution compared to the highly defined
relations shown by lines, movement or highlighting. This could be seen as
closeness in different ways, or somehow clustering items. However, it needs to
be clearly shown when for example one resource is a part of another resource.
One way of showing that could be a drop down list for often used relations
within the parent window.

• Explain and configure the annotation: Allow the user to rate the anno-
tations. The user should also be able to see who added the annotation and
other history of the annotations.

• Ability to choose the level of the relations shown: There is a trade-
off in showing all relations versus showing none, regarding the information

Deliverable 1.2 Version 1.0 45

http://proto5.flash.imapping.info

Nepomuk 15.01.2008

Luxuries Strategic

Targeted High-Value

Importance

D
iffi

cu
lty

iMapping
High-level

It should be easy to configure
how you want to interact
with the application; by

clicking, mouse-over etc.

Allow the user to rate the
annotations; who added

the annotation, the history
of the annotations

Show when the resource is
a part of another resource

Ability to choose the level
of the relations shown.

In the blue method you don’t
see the all the boxes. All the
boxes should be visible or
hinted that they are there.

Figure 23: Problem prioritisation - High-level

Luxuries Strategic

Targeted High-Value

Importance

D
iffi

cu
lty

Show the link’s relevance

iMapping
Low-level

Tool-tips for everything,
not just a few things.Who is “me”? Use the

resource name instead.

Show the type of relation by
writing it out or color coding
the line. Combine the green
way and the yellow way of

showing the relations.

It should be clearly
communicated when an

object is the same or an alias.

Different visual appearance
according to the type of

resource, a Word file, PDF etc.

Figure 24: Problem prioritisation - Low-level

Deliverable 1.2 Version 1.0 46

Nepomuk 15.01.2008

available and the cognitive load. A way to deal with this problem would be to
let the user dynamically choose or control how many levels of relations that
are shown. For instance; show me only my friends, not my friends friends.

• Hint for hidden objects: In the blue and red method you don’t see the all
the boxes if zoomed in. It could mean that related boxes are out of bounds.
All the boxes that are related to an object should be visible or the user should
be hinted about the fact that there are more relations and boxes.

• Box-sizes: What does the sizes of the boxes mean? Find a nice metaphor
to make this meaningful or make 100% clear that the size means nothing.

Low-Level Results

• Show the link’s relevance, e. g. by thickness (thicker line = stronger relation)
or transparency (more transparency = weaker relation).

• There should be different visual appearance according to the type of resource.
A word file must be visually different from a PDF, mp3 or a contact.

• In the green version: Who is “me”? Use the name of the object instead.
In the prototype “me” refers to the very object. The personal pronoun “me”
usually refers to a persona and not a resource that can represent a word
document or a hotel booking.

• Usage of tool-tips is helpful for the users. But it needs to be consistent and
used for all icons.

• It should be clearly communicated when an object is the same or an alias.

• Show the type of relation by writing it out, different line-types and/or colour-
coding of the line, preferably in combination with text (at least initially).

• Combine the green way and the yellow way of showing the relations (c. f.
Fig. 25). This could also be implemented together with the high-level issue
of configurability.

Figure 25: The green way and the yellow way of showing relations

Deliverable 1.2 Version 1.0 47

Nepomuk 15.01.2008

4.1.6 End-User Evaluation (Java Prototype)

Additional to the expert-evaluation of the Flash prototype we conducted usability
tests by exposing the Java GUI prototype to potential end users. The sample
consisted of nine subjects between age 25 and 40 most of them with an academic
background, none of them computer scientists.

After explaining the basic notion of a semantic desktop and of the iMapping ap-
proach to the testers, we showed them the running Java prototype pre-populated
with some simple content, similar to Fig. 26. They were asked to play around
with the program and were watched interacting. Special attention was paid to
unsuccessful interaction attempts, since they reveal how a user would have ex-
pected certain interactions. When users asked how a certain function can be used
or whether it is implemented, they were first told to try and find it on their own
before getting a straight answer, so their intuitive actions could be observed. When
a tester asked how an item could be opened, he was shown the mock-up of the
new item design depicted in Fig. 18 and asked how he would interact with it.

Figure 26: Screenshot of the Java GUI prototype used for usability tests

Results Apart from results that are due to the incomplete implementation and
that will be addressed anyway within the limits of feasibility in nepomuk, these are
some of the aggregated results concerning the interaction design:

What did not pose any problems and was usually found intuitive was

• zooming in general, esp using the scroll-wheel

• moving items around

• resizing items using the drag handle

• expanding / collapsing items using the triangle button of the new design (c. f.
Fig. 18)

Problems, that frequently occurred were

• wish to gain overview (e. g. hierarchical tree, convenient zoom-out-action)

• lost in zoom: to far in / too far out to navigate reasonably

Deliverable 1.2 Version 1.0 48

Nepomuk 15.01.2008

• expected to somehow ‘open’ (either expand or edit) an item on double click

• wish to automatically align items

• expected context menu on right-click

• wish to specify type of relationship between items and their children (consis-
tent with findings in Sec. 4.1.5)

These findings, along with many other comments and suggestions we gained, will
of course be considered in the UI design of the new Java-based full version.

4.2 QuiKey

QuiKey is a light-weight tool that can act as an interactive command-line for the
Knowledge Workbench.

It combines some simple established interaction techniques like auto-completion,
command interpreters and faceted browsing. QuiKey forms a generic, extensible
UI, that can be used to browse, query but also author a knowledge base. Despite
its versatility, QuiKey needs very little screen space, which makes it a candidate for
possible future mobile use.

QuiKey is inspired by quicksilver 22, a kind of advanced application launcher for
the Mac that has gained a lot of popularity due to its versatility and efficiency.
Quicksilver can open files and applications and trigger a large variety of common
actions not only on any files but also on specific information objects: Depending
on the plug-ins installed, it can e. g. manage play-lists in iTunes, send a file via
e-mail or dial a contact’s phone number. A Semantic Desktop system however
opens up some new applications areas for such tools, and QuiKey is being built to
cover some of them.

Since, on a semantic desktop in general and in CDS in particular, knowledge can
be modelled in a formal and fine granular way, it might be convenient to have
tools that support browsing and editing the knowledge base in such fine-granular
ways. It also aims at bringing simple ways of construction structures queries to the
not-so-technically-advanced users.

4.2.1 Interaction

QuiKey is organised around the notion of parts. A part can be an existing item, a
relation, a new text string or a command. Depending on the number, order and
types of parts entered, it is decided what action to take.

Authoring To add a new text item to the knowledge base, it is enough to just
type the text into the QuiKey console and press Enter.

To make CDS:statements about existing items, the statement can just be entered
in a subject-predicate-object fashion, separated by tab-keys. So. e. g.

Claudia Stern→works for→SAP Research[enter]

would just add that statement. Only that the user would not even have to type in
the whole sentence because all three parts are already known to the system which
would in an auto-completion manner suggest the best fitting NameItem for each
step. So for this example it is actually enough to type in

Cl→wor→SAP R[enter]

22http://blacktree.com/?quicksilver

Deliverable 1.2 Version 1.0 49

http://blacktree.com/?quicksilver

Nepomuk 15.01.2008

In this way, the personal knowledge web can be woven in single simple steps in
an ad-hoc fashion. Cognitive overhead is reduced to a minimum since additional
actions and decisions that are not part of the actual content, like starting an
application, opening a new document, choosing a file name and location, are not
necessary anymore.

Browsing Simply navigating the knowledge base through its graph structure is
possible with QuiKey without even changing into a different mode: when a part has
been selected, before the user types anything new to select the next part, existing
contents that fit the part pattern are already displayed in the suggestion area and
can be browsed.

Queries / Search Semantic Desktop Systems bring the opportunity for complex
structured queries, that can directly return a desired answer instead of just pointing
out possible resources like conventional search applications. The problem is, that
constructing complex, possibly nested queries is difficult, especially for non-expert
users and a slight error in the syntax of the query makes the whole query fail or
return unintended results. QuiKey tackles both of these problems:

Typos in the text should be easily recognised because there is an immediate feed-
back whether the typed-in string matches an existing NameItem or Relation. Be-
sides typos are avoided to a certain extent because not many keystrokes are needed
until the desired item can be picked from the suggestions. Syntax errors are avoided
because instead of requiring the user to write a whole query in some complicated
syntax which is then later parsed, in QuiKey the query is constructed interactively.
Because of this interactive construction of queries, there are no syntactical
characters.

To facilitate the construction of complex queries, we allow the modular construc-
tion of queries. A query can be saved or referred to as a special QueryItem.
Simple QueryItems can be constructed with the simple pattern shown the first two
query examples in Fig. 27: KA inhab→lives in→Karlsruhe[enter] cre-
ates a new QueryItem that represents a query about everything living in Karlsruhe.
More complex queries can be constructed by combining existing QueryItems like in
the examples 3 to 5 in Fig. 27.

4.2.2 Current State of Implementation / Future Work

The QuiKey idea is quite young and not very far implemented yet. Simple func-
tionalities are already implemented and include:

• Creating and deleting NameItems

• Creating and deleting Relations with their inverse Relations

• Creating and deleting Statements

• searching and displaying Items, Relations and Statements by partial string
matches.

Browsing and querying functionality is expected to be available during the first half
of 2008.

4.2.3 Integration / Possible Applications of QuiKey

While the general approach of QuiKey could be extended to more of less all of
a semantic desktop, or tried to be integrated with an existing non-semantic tool
like Quicksilver, this would add a lot more complexity – especially when it is used

Deliverable 1.2 Version 1.0 50

Nepomuk 15.01.2008

k
n
o
w

s

w
o
rk

 p
h
o
n
e

+
4
9
 7

2
1
 9

6
5
4
 8

5
4

K
a
rl

sr
u
h
e

li
v
e
s

in

k
n
o
w

sw
o
rk

s
a
t

 K

A
 i
n
h
a
b

?

 D
ir

k
sF

ri
e
n
d
s

?

 K

A
 i
n
h
a
b

?

 D

ir
k
sF

ri
e
n
d
s

?

??? ?

∧ a
n
d

∧ a
n
d

¬ n
o
t

w
o
rk

s
a
t

c
re

a
te

 n
e
w

N

a
m

e
It

e
m

M
a
rt

in
 W

il
li
a
m

s

M
a
rt

in
 W

il
li
a
m

s
h
a
s

d
a
u
g
h
te

r
K

ia
h

c
re

a
te

 n
e
w

T
e
x
t

It
e
m

S
u
rf

in
g
 m

a
k
e
s

M
a
rt

in
 f

e
e
l
li
k
e
 a

te

e
n
a
g
e
r.

 D

ir
k

 C
la

u
d
ia

 C
la

u
d
ia

S
A

P
 R

e
se

a
rc

h

 D

ir
k

?

 K

A
 i
n
h
a
b

?

 D

ir
k
s
F
r
ie

n
d
s

?
∧ a
n
d

S
A

P

 D

ir
k

k
n
o
w

s

 C

la
u
d
ia

A
u
th

o
ri

n
g

B
ro

w
si

n
g

Q
u
e
ri

e
s

S
ta

te
s

th
a
t

D
ir

k
 k

n
o
w

s
C
la

u
d
ia

.

B
ro

w
se

s
fr

o
m

 D
ir

k
 t

o
 C

la
u
d
ia

 a
n
d

sh
o
w

s
h
e
r

o
ff

ic
e
 p

h
o
n
e
 n

u
m

b
e
r.

A
d
d
s

th
e
 R

e
la

ti
o
n
 "

w
o
rk

s
a
t"

.
S
ta

te
s

th
a
t

C
la

u
d
ia

 w
o
rk

s
a
t

S
A
P
 R

e
se

a
rc

h
.

C
re

a
te

s
a
 n

e
w

 q
u
e
ry

-i
te

m
 w

h
ic

h

re
p
re

se
n
ts

 a
ll
 p

e
o
p
le

 k
n
o
w

n
 b

y
 D

ir
k
.

C
re

a
te

s
a
 n

e
w

 q
u
e
ry

-i
te

m
 w

h
ic

h

re
p
re

se
n
ts

 e
v
e
ry

o
n
e
 l
iv

in
g
 i
n
 K

a
rl

sr
u
h
e
.

C
o
m

b
in

e
s

th
e
 l
a
st

 t
w

o
 q

u
e
ri

e
s

to
 a

 a
n

in
te

rs
e
c
ti

o
n
 o

f
th

e
m

(
=
 P

e
o
p
le

 i
n
 K

a
rl

sr
u
h
e
 t

h
a
t

D
ir

k
 k

n
o
w

s)
.

A
s

a
b
o
v
e
 b

u
t

w
it

h
o
u
t

th
o
se

 w
o
rk

in
g
 a

t
S
A
P.

C
re

a
te

s
a
 n

e
w

 N
a
m

e
It

e
m

 w
it

h
 t

h
e
 g

iv
e
n
 c

o
n
te

n
t.

(N
a
m

e
It

e
m

 b
e
c
a
u
se

 s
h
o
rt

 a
n
d
 p

la
in

)

(L
a
st

 S
u
b
je

c
t

(M
a
rt

in
..

.)
 w

a
s

st
il
l
in

 f
o
c
u
s.

)
A
d
d
s

n
e
w

 r
e
la

ti
o
n
 t

y
p
e
 "

h
a
s

d
a
u
g
h
te

r"
.

A
d
d
s

n
e
w

 N
a
m

e
It

e
m

 "
K
ia

h
".

 A
d
d
s

st
a
te

m
e
n
t.

C
re

a
te

s
a
 n

e
w

 T
e
x
tI

te
m

 w
it

h
 t

h
e
 g

iv
e
n
 c

o
n
te

n
t.

(N

o
t

N
a
m

e
It

e
m

 b
e
c
a
u
se

 l
o
n
g
 a

n
d
 e

n
d
in

g
 w

it
h
 "

."
)

D
i
r
k
 !
"
k
n
o
 !
"
C
l
a
u
!

d
i
r
 !
"
k
n
o
 !
"
c
 !
"
w

p
h
o
 !
"

C
l
a
 !
"
w
o
r
k
s

a
t
 !
"
s
a
p

r
!

D
i
r
 !
"
k
n
o
 !
"
?
D
i
r
k
s
F
r
i
e
n
d
s
!

?
K
A

i
n
h
a
b
 !
"
l
i
v
e
s
 !
"
k
a
r
l
!

"
 !
"
a
n
d
 !
"
n
o
t
 !
"
w
o
r
 !
"
s
a
p
!

K
A

i
n
 !
"
a
n
d
 !
"
d
i
r
k
s
f
!

M
a
r
t
i
n

W
i
l
l
i
a
m
s
!

!
"
h
a
s

d
a
u
g
h
t
e
r
 !
"
K
i
a
h

!

S
u
r
f
i
n
g

m
a
k
e
s

M
a
r
t
i
n

f
e
e
l

l
i
k
e

a

t
e
e
n
a
g
e
r
.

!

Figure 27: Mock-up of some QuiKey actions including keystrokes necessary (left) and explanation of the action
(right).

Deliverable 1.2 Version 1.0 51

Nepomuk 15.01.2008

Figure 28: Screen shot of the current QuiKey implementation showing a list of
matches to the string “cla”.

for authoring and it is not clear in which of the connected data sources the newly
added content should go. So, for now, QuiKey is designed to run on CDS only.

Where useful, we will also integrate with the iMapping client, e.g. to open an
existing Item directly in an iMap or to ‘summon’ an existing item into a specific
place in an iMap.

Some modules of QuiKey will also be used in the iMapping client e. g. to select a
relation type when connecting two items visually. There the auto-completion and
ranking mechanisms of QuiKey can be reused.

For current information on QuiKey see http://quikey.info/

Deliverable 1.2 Version 1.0 52

http://quikey.info/

Nepomuk 15.01.2008

5 Natural Language Tools

”Applied Natural Language Processing or Applied NLP involves ”the construction of
intelligent computational artifacts that processing natural languages in ways that
are useful to people other than computational linguists”Cunningham (1999), Gaz-
dar (1996). Applied NLP is quite close to the definition Language Engineering (LE)
or Natural Language Engineering (NLE) which is the ”applied component of com-
putational linguistics which focuses on the practical outcome of modelling human
language use”Cunningham (1999). LE also implies the instrumental use of Natural
Language Processing within a larger system with some practical goal Cunningham
(1999).Knowledge Acquisition via Semantic Annotation and Ontology authoring is
vital to the growth and success of the Semantic Web Initiative. More importantly,
the majority of web documents as well as legacy intra and inter -desktop data in the
context of Nepomuk contain either free or partially structured text. Consequently
the application of LE plays a crucial role in easing the constriction inherent to the
knowledge acquisition bottleneck by providing support for the Ontology authoring
and Semi-Automatic/Automatic Semantic annotation.

5.1 Text Miner and Semantic Analysis Component

Text miner and semantic analysis component is used to process natural language
texts and generate metadata based on the semantic relations within the text.

Due to architecture requirements the decision was made to consolidate the design of
the semi-automatic semantic analysis component (WP1) and the text mining and
semantic extractor component (WP2) into one Text Miner and Semantic Analysis
component.

The text analysis component can be used in a variety of ways:

• In WP1, it is currently being used to conduct semi-automatic semantic pro-
cessing of Wiki documents and furthermore enhance their presentation to
the user with links to descriptions of detected concepts.

• In WP2, it is used for automatic extraction of mentions of semantic concepts
and the enrichment of document’s metadata. It can be used to facilitate
document and resource navigation and search.

• However, the usage of the text analysis component is not limited to these
scenarios, and it may be used by any future NEPOMUK component.

Within the NEPOMUK implementation itself, text analysis is implemented by
“Structure Recommender”, component (Comp-StrucRec 23).

The text analytics component consists of 2 subsystems:

1. Language Processor API is used to perform linguistic analysis of natural
language texts. It includes generic functions like text tokenization, sentence
detection, detection of lexical expressions, including multi-word expressions,
part of speech detection, morphological normalization, etc.

Lexical information associated with semantic concepts is extracted from RD-
FRepository.

2. Semantic Processor API is used to perform semantic analysis of lexical ex-
pressions in natural language documents discovered by Language Processor.
This semantic analysis is utilising ontological knowledge stored in RDFRepos-
itory. Semantic analysis provides the following:

• Automatic disambiguation of lexical expressions found in the text. The
result is the mapping from the words or phrases in the text to the
concepts in the ontology these words denote.

23http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main/Comp-StrucRec

Deliverable 1.2 Version 1.0 53

Nepomuk 15.01.2008

• Detection of a topic or focus of the analysed text document. The
focus is a set of concepts from the ontology which are found to be
the most central to the document. The focal concepts may not be
directly referred in the text, but instead implied from context. The
focus of a document may be used to perform classification or tagging
of documents, or locate the most important keywords related to the
document (even those keywords which did not appear in the text).

The Semantic Processor API uses an algorithm based on the spread of activation
technique (Quillan 1966) used in semantic networks. Activation mapping is typ-
ically provided by the Language Processor, however the Semantic Processor API
can be called directly. The spread of activation in the ontology is affected by a
number of parameters, all of which can be controlled allowing it to be tuned to suit
specific tasks and needs. The parameters which we use to configure the spread of
activation are:

• The minimum activation level required for activation to spread onwards

• The maximum distance (number of link traversals) activation can spread

• The decay rate of the activation as it spreads. This can be further customised
on a per link/node basis allowing certain types of links to be considered weak-
er/stronger or furthermore allowing nodes to act as sinkholes for activation
to prevent it from spreading further.

• Link direction; directed and undirected links can affect the spread in different
ways

• A parameter that sets the averaging of activation over outgoing links from
a node. This parameter can be enabled, disabled or used with a particular
coefficient.

Initial activation to nodes in the ontology (which sets the whole process in motion)
is provided by language processing of text, which maps term mentions within text
to concepts.

In text analysis initial activation supplied by language processing provides start-
ing points for the algorithm which represent concepts mentioned in a text. As this
spreads around the ontology other nodes receive activation and the activation accu-
mulates in certain nodes. This provides a basis for determining a conceptual focus,
which in the analysis of a long text or discourse is used to help disambiguation of
lexical entries which correspond to multiple senses in the ontology.

By varying the parameters used during spreading activation, different results can be
achieved, which allows the semantic processing to be adapted to different tasks and
to be used by other components as necessary. For some more complicated tasks
such as Socio-Semantic Analysis a layered use of the technique can be applied (Kin-
sella, Harth, Troussov, Sogrin, Judge, Hayes & Breslin 2007) cascading the results
of one analysis run onwards over the next, we can abstract away from individual
concepts and concentrate on the focus for the next iteration of processing.

Therefore, by processing documents in this manner, we create an abstract semantic
model of the document where activation in nodes represents the level of importance
of certain concepts to the overall discourse. Using this modelling as a substitute
for keyword analysis and combining it with standard information retrieval similar-
ity metrics like Cosine Similarity Measure we have implemented Comp-StrucRec,
which performs a sort of concept-based search. This component can return results
based on similarity to concepts which are semantically close to those found in docu-
ments/queries but which are not explicitly present. This allows us to increase recall
of relevant documents and to make a more accurate assessment of the“aboutness”
of a document when searching for “more like this”.

Deliverable 1.2 Version 1.0 54

Nepomuk 15.01.2008

5.1.1 Language Processing Support Services

The Language Processor API aims to first of all to provide linguistic
textual analysis of text documents for the aforementioned Semantic Processor API.
In addition other specialised linguistic processing and language generation function-
alities are also available services for WP1 and WP2 such as:

1. The identification of most import keywords in a document5.1.2,

2. The identification of speech acts within a given text5.1.3. Speech acts con-
sist of questions, statements, orders, requests for permission, requests for
information or an action, etc.

5.1.2 Keyword Extraction

Keyword Extraction Service Keyword Extraction is the identification of most
import keywords in a document. The Keyword Extraction service can cater for
various use cases such as: the generation of candidate semantic tags or heuristic
support for the Semantic Processor API. Two algorithms are currently available24.
In NEPOMUK the implementation of text analysis is implemented by ‘”Related Item
Recommender”component (RelItemRec). Algorithm 1 The following algorithm is
implemented purely in Java and is independent of any Open source NLP platform,
consequently it can be embedded directly into any NEPOMUK application or the
Semantic Analysis Component 5.1

1. Read a URL address input by the user.

2. Open an active http connection.

3. Remove the stopwords25 from the textual content of the website provide by
the http connection.

4. Read in the remaining content as a string.

5. Strip all of the html code from the string which was read in.

6. Tokenize this string.

7. Place each word in the string and its frequency into a hash-table. The
frequency is the word’s weight.

8. Increase the frequency (and therefore weight) of words that are in the title
and words which consist of one or more uppercase characters, by adding half
the word.s frequency to its original frequency.

9. If the frequency is greater than 4, return the word and its frequency to the
user

Algorithm 2 - Kea - Automatic Keyphrase Detection

Kea is a tool for automatic detection of key phrases developed at the Univer-
sity of Waikato in New Zealand. The home page of the project can be found at
26. To promote interoperability with other Language Processing services within
Comp-StrucRec and the ”Related Item Recommender” component (RelItemRec).
and across NEPOMUK, the KEA tool as had been made available using the
GATECunningham, Maynard, Bontcheva & Tablan (2002) framework. GATE con-
tains a UIMA Interoperability layer. UIMA (Unstructured Information Management
Architecture) is a platform for Natural Language Processing developed by IBM. It

24These services have been provided by Hewlett-Packard Galway and DERI NUIG
25stop words are those words which are so common that they are useless to index or use in

search engines, i.e a, the, in, of, is performed.
26http://www.nzdl.org/Kea/

Deliverable 1.2 Version 1.0 55

Nepomuk 15.01.2008

is very similar to the GATE architecture in that it represents documents as text and
annotations. Processing Resources in UIMA are called analysis engines than can
manipulate UIMA documents or CAS (Common Analyis Structure) as they known
within UIMA terminology. UIMA analysis engines behave similarly to GATE Pro-
cessing Resources. GATE’s UIMA interoperability layer permits the embedding of
GATE PRs within UIMA Text analysis Engines (TAEs)such as IBM’s Text Analysis
and Semantic Analysis Component 5.1 described earlier. In the context of KEA -
outputted GATE annotations can be mapped over to CAS annotations to be in-
cluded as additional parameters to tune spreaded activation within IBMs Semantic
Analysis Component5.1.KEA is realised as a GATE Processing Resource(PR). Kea
is based on machine learning and must be trained before it can be used to extract
keyphrases. In order to do this, a corpus is required where the documents are anno-
tated with keyphrases. KEA is available as part of the Keyword Extraction Service.
A preselected corpus suitable for NEPOMUK has been compiled and used to con-
struct a training model for the KEA NEPOMUK service. A stand-alone version
of the tool, as a GATE KEA Processing Resource is also available, should users
wish to tune the training model and subsequently the KEA tool to their needs.
As mentioned earlier a corpus is needed to construct a training model for KEA.
Corpora in the Kea format (where the text and keyphrases are in separate files with
equivalent names but different extensions) can be imported into GATE using the
“KEA Corpus Importer” tool. The usage of this tool is clearly documented in the
GATE user Guide27. Furthermore, manually annotated corpora for such training
purposes are available from the KEA Project Page above.

5.1.3 Speech Act identification

When provided a given text, the Speech Act Identification service will return a set
of Speech Act Annotations. This service is was designed specifically to support the
prototype for the Semantic Email Client - Semanta7.

Text is annotated at the sentential level using the GATE IE engine – ANNIE (A
Nearly New Information Extraction Engine, Cunningham et al. (2002)). Finite
State Parsing is applied over annotations and text tokens - given a set of hand-
coded JAPE grammars. Sentences are annotated within email text as instances of
speech acts. In addition a collection of hand written gazetteers or lists of words
and key phrases are used to aid the parsing process. A Speech Act Ontology is
used to model the Knowledge Acquisition Rules (KA) which from the basis of the
Languages Resources used in GATE. The KA rules are refined on an iterative basis
by the Language Engineer and Knowledge Engineer and changes are integrated into
the next version of the Speech Act Service. The initial development was inspired
be Khosravi & Wilks (1999) based on earlier versions of GATE. The service is
currently at the alpha stage and will released simultaneously to NEPOMUK in
conjunction with D1.2. A beta release will occur in Month 25 in conjunction with
first ”Semanta” Prototype Scerri (2007).

5.1.4 Text Analysis and CDS

To verify that the text analysis componentcan deal with CDS, we created a CDS
demo model that covered most information of the persona descriptions of the per-
sonas Dirk, Claudia and Martin. We took several texts and let the text analysis
componentanalyse them against this demo CDS model. Among these texts were
the original persona descriptions, some scenario descriptions related to these per-
sonas and some short texts written to test specific features of the component like
disambiguation or the recognition of not explicitly mentioned foci.

The disambiguation feature can be very useful for ambiguous vocabularies. But

27http://gate.ac.uk/documentation.html

Deliverable 1.2 Version 1.0 56

Nepomuk 15.01.2008

Figure 29: Ontology Layers in SALT

it is not needed for use with cds, since NameItems are already unique. Our tests
showed that, with the right parameter settings, the text analysis componentcomes
up with text foci, even if they were not explicitly mentioned in the text. While
these foci still contained some errors, the results were good enough e. g. to act
as proposed tags, which is envisioned for an NLP-based tagging tool. However, to
make full use of the CDS-semantics like aliases and inverse relations, it would need
either need some internal adaptions to CDS or a special export prior to generating
the vocabulary.

5.2 Semantic Authoring with SALT

Semantic Authoring aims to a framework for semantically annotating scientific
publications. The first approach that we will follow will be based on the Latex
writing environment and will produce Semantic PDF Documents. This instantiation
of the framework is called ‘SALT”, for Semantically Annotated LaTeX. It is an
authoring framework for creating semantic documents for scientific publications.

SALT, described in Groza, Handschuh, Möller & Decker (2007), Groza, Möller,
Handschuh, Trif & Decker (2007), is a system which allows authors to explicate
several kinds of information (see Fig. 29 and see also Sec. 2.5.1).

SALT comprises two layers: (i) a syntactic layer, and (ii) a semantic layer. The
syntactic layer represents the bridge between the semantic layer and the hosting
environment, i. e. LaTeX. It defines and series of new LaTeX commands, while
making use of some of the already existing ones in order to capture the logical
structure of the document and the semantics present in the publication’s content.
As a remark, we chose LaTeX because is one of the most widely used writing
environments in the scientific world. In a similar way, the SALT framework can be
used also together with, for example, Microsoft WinWord.

The semantic layer is formed by a set of three ontologies: (i) The Document
Ontology – modelling the logical structure of the document (SALT extracts the
existing structure of a LaTeX document and converts document parts into address-
able snippets), (ii) The Rhetorical Ontology – modelling the rhetorical structure of
the publication, and (iii) The Annotation Ontology – linking the rhetorics captured
in the document’s content and the document itself; it also models the publication’s
shallow metadata. Detailing a bit further the Rhetorical Ontology, it has three sides:
(i) a side modelling the claims and supports present in scientific publications and
the rhetorical relations connecting them, (ii) a side modelling the rhetorical block
structure of the publication, and (iii) the last one, modelling the argumentative
discourse span over multiple publications, and seen as a communication between
different authors, the current stage being described in the publication modelled

Deliverable 1.2 Version 1.0 57

Nepomuk 15.01.2008

by the current ontology instances. As LaTeX (like almost all document creation
systems) allows only to represent consistent strict trees, it might be beneficial for
a user to be able to start editing the structure of a document in a CDS tool and
export to SALT later. To be able to continue editing in SALT allows to keep and
refine all formal structures.

5.3 Human Language Technology(HLT)

HLT for Knowledge Creation implies the use of Human Language Technology (syn-
onymous with Applied NLP) specifically Controlled Natural Language Technology
to author Ontologies and create metadata via Controlled Language Semantic An-
notation within specific user cases such as status report writing, note taking and
recording meeting minutes on the semantic desktop.

HLT for Knowledge access implies the reverse process, whereby Natural Language
Generation (NLG) can be applied to

• Ontology authoring and the Ontology development life-cycle – to provide
feedback to the domain expert for the purposes of implementing quality
assurance over a newly created Ontology or text generation of Ontology
version ”diffs” to allow user friendly inspection and finally

• automatic text summary generation from Knowledge within the semantic
desktop data store based on user specified query. Use cases include - report
summary generation based on semantically annotated status reports or goal
specific publication summarisation for users conducting a literature review or
search across SALT annotated publications on the desktop.

NLG can be targeted to CDS. The initial research described above was developed
as part‘”Related Item Recommender” component ST1240 (RelItemRec) in Year 1
and 2 of the NEPOMUK Project, primarily due to the overlap with NLP related
work. This work has resulted in the creation of a new component ST1430 Semantic
email, blogging and Authoring to be completed for WP1000 Deliverable 1.3

5.3.1 Ontology authoring using Controlled Natural Language

A form of Simplified English or Controlled (Natural) Language (CL) is used to
create and author an ontology. In addition, instances of concepts can be described
to populate the ontology using CL. The CL text will then be translated into the
targeted underlying ontology. The input will consist of CL text input only and the
type of ontology to be targeted too. The output will consist of a reference to newly
created and populated ontology. The CL syntax analyzer in conjunction with the
in vivo ontology will guide the user with respect to legal CL input. See Tablan,
Polajnar, Cunningham & Bontcheva (2006) for further reading.

5.3.2 Text generation of Ontologies

Given a reference to an ontology the inverse of 5.3.1 will be applied. Thus a text
summary, generated with Controlled (Natural) Language or CL, of a given ontology
and its populated instances will be returned to the user. This will involve traversing
the ontology and generating CL text given a selection of XML templates, which
will contain snippets of CL that will, given a concept or instance, combine into
a CL sentence and finally a CL based textual summary of a the ontology. This
process in conjunction with 5.3.1 can be used to edit a CL textual summary of
an existing ontology in order to regenerate or amend/edit an existing ontology
repeatedly to achieve the desired output. The process of merging 5.3.1 and 5.3.2

Deliverable 1.2 Version 1.0 58

Nepomuk 15.01.2008

is called round-trip ontology authoring Tablan et al. (2006).

The technology used for 5.3.1 and 5.3.2 is based on ClOnE - Controlled Language
for Ontology Editing and CLIE - Controlled Language Information Extraction

These technologies have been made available as part of the existing collaboration
between DERI Galway, National University of Ireland, Galway and the Sheffield
NLP group, University of Sheffield. An initial evaluation was conducted by DERI
Galway in collaboration with the Sheffield NLP group involving a comparison be-
tween an existing Ontology Engineering Tool - Protege and CLOnE. The results
were favourable and further details with respect to the implementation and evalu-
ation can found here Funk, Tablan, Bontcheva, Cunningham, Davis & Handschuh
(2007).

Deliverable 1.2 Version 1.0 59

Nepomuk 15.01.2008

6 CDS and Wikis

Many ideas in CDS stem from wiki concepts. Wikis are fast editors to create
hypertext, due to their simple naming scheme and the ability to link to not-yet-
existent pages. Wikis also focus on structure, not visual formatting of content.
Most wikis use wiki syntax, which is a convenient way to type text and structures
at the same time.

For the next version of CDS and the HKW we plan to integrate wiki syntax.
Wiki syntax in CDS is used to enter text, structures and formal statements. The
WikiModel, an open source component developed by Cognium Systems, fulfils all
needs. In this section we first describe the WikiModel and its syntax in depth, so
that this deliverable can act as a reference handbook for the syntax.

The Structured Text Interchange Format (STIF) is presented. It will be used in
future versions of HKW to persist the content of items.

We present extensions to the WikiModel syntax to allow entering formal state-
ments.

Finally, we describe BounceIt, a Web 2.0 service built with WikiModel.

6.1 WikiModel 2.0

WikiModel is a data model defining the structure of wiki documents. As such, it
defines wiki document elements and their containment rules (like a DTD or XML
Schema for XML documents).

Second, WikiModel is an API providing access to the structure of wiki documents.
This API gives access to and control over the internal structure of individual wiki
documents. Usage of this API guaranties that the accessed wiki documents respect
the structure defined by the model.

WikiModel is not a complete “wiki engine”, it does not contain data storage, ver-
sioning or access rights. Further, WikiModel does not check or validate references
between documents.

WikiModel can be used as a

• rendering engine to transform various wiki syntaxes to formatted content
(HTML, PDF, TEX, ...), or

• parser for semantic annotations.

6.1.1 Design

In this section we briefly review the design and evolution of WikiModel. There are
currently two versions. Figure 30 shows the general way how WikiModel works:

• Wiki source syntax is parsed and generates a stream of wiki events (WEM).

• This stream can be converted by a wiki document builder into an in-memory
representation, the wiki object model (WOM). This is similar to the genera-
tion of an XML document object model (DOM) from a stream of SAX-events.

• Alternatively, a stream of wiki events can be converted into different target
syntaxes. One possible target syntax is back to source wiki syntax. This
allows round-trip editing.

• The WOM can also be converted back to a WEM stream. This allows to
create rich-text editors to work on the WOM, that still remain compatible
with wiki syntax.

Deliverable 1.2 Version 1.0 60

Nepomuk 15.01.2008

Figure 30: WikiModel – The Big Picture

Figure 31: WikiModel Version 2

Deliverable 1.2 Version 1.0 61

Nepomuk 15.01.2008

The design of WikiModel can be described on three levels:

WikiModel Schema: The data model or document schema is the conceptual core.
It defines what elements exist and how they can be nested. The WikiModel
schema is sufficiently flexible to simulate almost any HTML formatting (e. g.
even tables with embedded lists, headers and paragraphs). This goes beyond
the expressivity of most existing wiki syntaxes.

Yet the resulting structure is much simpler than XHTML, which greatly sim-
plifies the validation and manipulation of documents.

WikiModel can represent semantic statements about complete documents
and parts of a document.

The document schema is a super-set of structural elements existing in others
wikis, so the information from almost any wiki can be imported without
loosing information or structure.

WikiModel Syntax: The WikiModel CommonSyntax has been extended to handle
a greater number of structural elements. It allows to manipulate all elements
defined in WikiModel. The CommonSyntax is described in detail in the next
section.

WikiModel Parsers: Parsers for multiple wiki syntaxes are available (JspWiki, XWiki,
MediaWiki, Creole, GoogleCode wiki, ...). Authors may thus use their syntax
of choice. An overview of the parsing is given in Fig. 31: A source syntax is
interpreted in a parser context and routed to an event listener.

All parsers give access to a valid structure of documents, i. e. if a document
contains non-valid elements (non-closed markup or overlapping elements)
then such errors will be fixed automatically on-the-fly.

6.1.2 Complete Syntax Description

The CommonSyntax of WikiModel provides support for normal wiki structures
(e. g. lists, tables, inline formatting), embedded documents, semantic properties
and macros.

The syntax of WikiModel allows for basic inline text formatting like most wikis
do (c. f. Fig. 32). To give a user the option to prevent WikiModel parsers from
interpreting a symbol, every symbol can be escaped via a preceding backslash
character (“\”).

To allow for serious usage of wiki syntax, WikiModel supports e. g. a number of
typographic symbols as well as mathematical symbols. A complete list of special
symbols is depicted in Fig. 33.

Text can be structured with various kinds of lists, as depicted in Fig. 34 and tables.
Support for tables is pretty extensive: A user can use header cells, body cells as
well as adding properties to individual cells or rows (c. f. Fig. 35). Different from
most wikis, tables can contain other nested tables or other arbitrary sub-document,
as shown in Fig. 36.

To support editorial processes, WikiModel supports so called information blocks
(see Fig. 37), which are snippets of text rendered with a special attention-catching
symbol. These information blocks can contain sub-documents on their own.

Links to external entities or other wiki pages are made via square brackets (“[”,“]”).
WikiModel does not define how such links are interpreted. Words separated via
a colon (“:”) with without any whitespace (e. g. like in wikipedia:Berlin)
are reported as links automatically as well. WikiModel distinguishes between these
automatic links and manual links, which use square brackets – possibly also using
a colon.

Deliverable 1.2 Version 1.0 62

Nepomuk 15.01.2008

Page 1BounceIt!

04.01.2008 20:09:01http://88.191.47.84:8888/bounce/0263f0fe-975e-4c5d-a64e-e84b2b477288

edit | home | new page | new file or image

Editing Help
Text Formatting
bold bold
__italic__ italic
text~sub~ textsub
text^sup^ textsup

++big++ big
--small-- small

@@insert@@ insert
##delete## delete

Examples:

H~2~O H2O

H~2~SO~4~ <=> 2H^+^ + SO~4~^2-^ H2SO4 ⇔ 2H+ + SO4
2-

Escaping
Any symbols (including special ones) can be "escaped" using the \ (back slash) sign. To put the backslash in
the text the sequence \\ (two consequtive backslashes) should be used.

Special Symbols
text - text text - text
text -- text text – text
text --- text or text---text text — text
<<text>> «text»
text... text…

(E) €
(c) ¢
(Y) ¥
(L) £

(P) ¶
(s) §
(S) ∑
25(o)C 25°C
(8)/(8) => (8) ∞/∞ ⇒ ∞
CogniumSystems(C) CogniumSystems©
TapTipTop(tm) or TapTipTop(TM) TapTipTop™
A (*) B A • B
A +/- B A ± B
A != B A ≠ B
A -> B or A --> B A → B
A <- B or A <-- B A ← B
A <-> B A ↔ B
A => B or A ==> B A ⇒ B
A <= B A ≤ B
A <== B A ⇐ B
A <=> B A ⇔ B

Figure 32: WikiModel Syntax for Basic Inline Formatting

Syntax Example Fig. 38 shows an example using most features. The example
starts with three lines stating semantic properties about the complete document,
here: type, title and summary. Next a headline is rendered, followed by a list. The
next paragraph in the example contains an inline property (via the syntax “%”,
explained in the next paragraph). The sample document ends with a table, which
contains an embedded document (marked with “(((” and “)))”) in cell 2.2.

Using the default formatter, the example in Fig. 38 results in the following HTML
code:

<div class="content" id="content"><div class="doc">

<div class="property" url="rdf:type">
<p>toto:Document</p></div>

<div class="property" url="title"><p>Hello World</p></div>

<div class="property"
url="summary"><p>This is a short description</p></div>

<div class="section section-level-1">
<h1 class="section-title">Hello World</h1>
<div class="section-content">

item one

sub-item a
sub-item b

ordered X
ordered Y

sub-item c

item two

Deliverable 1.2 Version 1.0 63

Nepomuk 15.01.2008

Page 1BounceIt!

04.01.2008 20:33:30http://88.191.47.84:8888/bounce/e03a70a1-9e84-495c-950d-b95c4dcff9eb

edit | home | new page | new file or image

Special Symbols
text - text text - text
text -- text text – text
text --- text or text---text text — text
<<text>> «text»
text... text…

(E) €
(c) ¢
(Y) ¥
(L) £

(P) ¶
(s) §
(S) ∑
25(o)C 25°C
(8)/(8) => (8) ∞/∞ ⇒ ∞
CogniumSystems(C) CogniumSystems©
TapTipTop(tm) or TapTipTop(TM) TapTipTop™
A (*) B A • B
A +/- B A ± B
A != B A ≠ B
A -> B or A --> B A → B
A <- B or A <-- B A ← B
A <-> B A ↔ B
A => B or A ==> B A ⇒ B
A <= B A ≤ B
A <== B A ⇐ B
A <=> B A ⇔ B
A >= B A ≥ B
A != B A ≠ B
A ~= B A ≈ B

Section Titles
= Title 1
== Title 2
=== Title 3
==== Title 4
===== Title 5
====== Title 6

Title 1
Title 2
Title 3
Title 4

Title 5

Title 6

Figure 33: WikiModel Syntax for Special Symbols

Deliverable 1.2 Version 1.0 64

Nepomuk 15.01.2008

Page 1BounceIt!

04.01.2008 20:42:25http://88.191.47.84:8888/bounce/e03a70a1-9e84-495c-950d-b95c4dcff9eb

edit | home | new page | new file or image

Lists
Ordered lists
+ first ordered item
+ second ordered item
 (it has multiple lines)

1. first ordered item
2. second ordered item

(it has multiple lines)

Unordered lists
- item one
- item two
 (it has multiple lines)

item one
item two
(it has multiple lines)

or:

* item one
* item two
 (it has multiple lines)

item one
item two
(it has multiple lines)

Definition Lists
? Term A
! Definition A
? Term B
! First Definition B
! Second Definition B

Term A
Definition A

Term B
First Definition B
Second Definition B

? What do you think
 about this project?
! I think that it is a very
 interesting project!

What do you think
about this project?

I think that it is a very
interesting project!

Mixed Lists
+ item one
+ item two
 - subitem A
 - subitem B
+ item three
 ? Term X
 ! The full term X description
 ? Term Y
 ! The full term Y description
+ item four

1. item one
2. item two

subitem A
subitem B

3. item three
Term X

The full term X description
Term Y

The full term Y description
4. item four

Tables
Simple Tables
!! Header 1.1 !! Header 1.2
:: Cell 2.1 :: Cell 2.2 Header 1.1 Header 1.2

Cell 2.1 Cell 2.2

Figure 34: WikiModel Syntax for Lists

Deliverable 1.2 Version 1.0 65

Nepomuk 15.01.2008

Page 1BounceIt!

04.01.2008 20:43:07http://88.191.47.84:8888/bounce/e03a70a1-9e84-495c-950d-b95c4dcff9eb

edit | home | new page | new file or image

Tables
Simple Tables
!! Header 1.1 !! Header 1.2
:: Cell 2.1 :: Cell 2.2 Header 1.1 Header 1.2

Cell 2.1 Cell 2.2

Simple tables with parameters
!!{{colspan=2}} Table Header
:: Cell One :: Cell Two Table Header

Cell One Cell Two

See also the next section for more information about formatting of tables.

Complex Tables formatting
The central cell the table has specific parameters:

:: C-1.1 :: C-1.2 :: C-1.3
:: C-2.1 ::{{bgcolor=#FAFAD2}} C-2.2 :: C-2.3
:: C-3.1 :: C-3.2 :: C-3.3

C-1.1 C-1.2 C-1.3
C-2.1 C-2.2 C-2.3
C-3.1 C-3.2 C-3.3

The second row of the table has parameters:

:: C-1.1 :: C-1.2 :: C-1.3
{{bgcolor=#FAFAD2}}:: C-2.1 :: C-2.2 :: C-2.3
:: C-3.1 :: C-3.2 :: C-3.3

C-1.1 C-1.2 C-1.3
C-2.1 C-2.2 C-2.3
C-3.1 C-3.2 C-3.3

A table with parameters:

{{bgcolor=#FAFAD2}}
:: C-1.1 :: C-1.2 :: C-1.3
:: C-2.1 :: C-2.2 :: C-2.3
:: C-3.1 :: C-3.2 :: C-3.3

C-1.1 C-1.2 C-1.3
C-2.1 C-2.2 C-2.3
C-3.1 C-3.2 C-3.3

All elements with parameters:

{{bgcolor=#FAFAD2}}
:: C-1.1 :: C-1.2 :: C-1.3
{{bgcolor="#7FFFD4"}}::{{colspan=3}} C-2.1
:: C-3.1 ::{{bgcolor="#EEEEEE"}} C-3.2 :: C-3.3

C-1.1 C-1.2 C-1.3
C-2.1
C-3.1 C-3.2 C-3.3

Complex Table Formatting
Note that table can put any structrual elements in tables using the (((and))) symbols.

!! Head 1.1 !! Head 1.2 !! Head 1.3
:: Cell 2.1 :: (((
= Hello, world!
* one
* two
))) :: Cell 2.3
:: Cell 3.1 :: Cell 3.2 :: Cell 3.3

Head 1.1 Head 1.2 Head 1.3
Cell 2.1 Hello, world!

one

Cell 2.3

Figure 35: WikiModel Syntax for Simple Table Formatting

Deliverable 1.2 Version 1.0 66

Nepomuk 15.01.2008

Page 1BounceIt!

04.01.2008 20:45:00http://88.191.47.84:8888/bounce/e03a70a1-9e84-495c-950d-b95c4dcff9eb

edit | home | new page | new file or image

Complex Table Formatting
Note that table can put any structrual elements in tables using the (((and))) symbols.

!! Head 1.1 !! Head 1.2 !! Head 1.3
:: Cell 2.1 :: (((
= Hello, world!
* one
* two
))) :: Cell 2.3
:: Cell 3.1 :: Cell 3.2 :: Cell 3.3

Head 1.1 Head 1.2 Head 1.3
Cell 2.1 Hello, world!

one
two

Cell 2.3

Cell 3.1 Cell 3.2 Cell 3.3

!! Head 1.1 !! Head 1.2 !! Head 1.3
:: Cell 2.1 :: (((
This is an internal "document" containing
additional block elements.
- item a
 + item one
 + item two
 + item three
- item b
!!{{colspan=2}} Header
:: X :: Y

A paragraph after the embedded table.
))) :: Cell 2.3
:: Cell 3.1 :: Cell 3.2 :: Cell 3.3

Head
1.1 Head 1.2 Head

1.3
Cell
2.1

This is an internal "document"
containing additional block
elements.

item a
1. item one
2. item two
3. item three
item b

Header
X Y

A paragraph after the embedded
table.

Cell
2.3

Cell
3.1

Cell 3.2 Cell
3.3

Information Blocks
Information blocs can be used to select a block of information and to make it more visible on the page. There
are the following types of blocks:

/*\ *Simple*
A normal text block

Simple
A normal text block

/!\ *Exclamation*
A simple text requiring
special attention to it.

Exclamation
A simple text requiring
special attention to it.

/i\ *Information*
Simple
information block

Information
Simple
information block

/w\ *Warning*
Warning message

Warning
Warning message

/x\ *Error*
This is forbidden!

Error
This is forbidden!

Figure 36: WikiModel Syntax for Complex Table Formatting

Deliverable 1.2 Version 1.0 67

Nepomuk 15.01.2008

Page 1BounceIt!

04.01.2008 20:47:09http://88.191.47.84:8888/bounce/e03a70a1-9e84-495c-950d-b95c4dcff9eb

edit | home | new page | new file or image

Information Blocks
Information blocs can be used to select a block of information and to make it more visible on the page. There
are the following types of blocks:

/*\ *Simple*
A normal text block

Simple
A normal text block

/!\ *Exclamation*
A simple text requiring
special attention to it.

Exclamation
A simple text requiring
special attention to it.

/i\ *Information*
Simple
information block

Information
Simple
information block

/w\ *Warning*
Warning message

Warning
Warning message

/x\ *Error*
This is forbidden!

Error
This is forbidden!

It is possible to include structured content in information blocks using embedded documents. Each embedded
document can contain all markup elements available for the root document.
Each embedded document is delimited by the symbols (((and))).

/i\ *Any combinations are possible!* (((
This is an internal document
/!\ *Exclamation!*
+ item one
+ item two
 - a
 - b
+ item three
)))

Any combinations are possible!
This is an internal document

Exclamation!

1. item one
2. item two

a
b

3. item three

Cognium Systems © 2007
Figure 37: WikiModel Syntax for Information Blocks

Deliverable 1.2 Version 1.0 68

Nepomuk 15.01.2008

Figure 38: WikiModel Syntax Example 1

Deliverable 1.2 Version 1.0 69

Nepomuk 15.01.2008

<p>The table below contains

an <span class="property"

url="seeAlso">embedded document.

It can contain the same formatting

elements as the root document.
</p>
<table class="contentTable">

<tbody>
<tr><th>Table Header 1.1</th>

<th>Table Header 1.2</th></tr>
<tr><td>Cell 2.1</td>

<td>Cell 2.2<div class="doc">
<div class="section section-level-2">

<h2 class="section-title">
Embedded document

</h2>
<div class="section-content">

list item X
list item Y

</div>

</div>
</div>
This text goes after the embedded

document

</td>
</tr>
<tr><td>Cell 3.1</td><td>Cell 3.2</td></tr>

</tbody>
</table>
<p></p>

</div>
</div>

</div></div>

Embedded documents The WikiModel introduces the notion of“embedded doc-
uments”. The possible structure of such a document is exactly the same as the
structure of the topmost one. It means that using embedded documents becomes
possible to put block elements inside others blocks. This is a unique feature of the
WikiModel, compared to other wiki syntaxes. Embedded documents are delimited
by the following syntactical elements: “(((”...“)))”. One embedded document can
contain its own embedded documents and there are no limits in nesting depth.
Syntax for embedded documents:

The top-level document content
(((
... the embedded document ...
)))
... the top-level document again

Semantic Properties WikiModel supports inline and block properties. The dif-
ference between these two is not important from the point of view of users. The
names of properties can be chosen freely. All documents (top-level and embedded
ones) can have their own properties.

Inline Property: The simplest property is an inline property, which can be used
to annotate parts within a document, i. e. the value of this property may

Deliverable 1.2 Version 1.0 70

Nepomuk 15.01.2008

only contain inline formatting. It is useful to annotate single word or short
snippets within a paragraph.

Syntax example:

I am living in %city(Paris).

The syntax to create a semantic link similar to e. g. Semantic MediaWiki
(Krötzsch, Vrandecic & Völkel 2006) to “Paris” is:

I am living in %city([Paris])

Block Property: Besides inline properties, WikiModel also allows block properties.
Properties of this type takes the same place in the structure of the document
as other block elements, like paragraphs, tables, list, or headers. The value
of a block property is a block (hence the name), defined via:

%propertyName a property value

or even an embedded document, defined via this syntax:

%description (((
= Header =
This is a structured content of the property "description"
)))

Using semantic properties it is possible to create very complex structured docu-
ments containing at the same time semantic markup and visual formatting. A more
complex example of properties follows:

%title A simple document

%summary A short description of this document.
It can contain *in-line formatting* and it can
span multiple lines forming one big paragraph.

%author (((
%firstName Mikhail
%lastName Kotelnikov
%worksIn (((

%type [Company]
%name Cognium Systems
%address (((

....
)))
%description *Cognium Systems* is a
semantic web company...

)))
)))

This is a simple content of the top-level document...

The interpretation of such properties depends completely on developers using the
WikiModel. One possible application of this notion is the generation of XML struc-
tures inter-mixed with human-readable formatting. But the original goal of these
structural elements is the introduction of a unified syntax for semantic markups in
wiki documents. Each property can be used to declare a semantic statement about
the document in which it was defined.

Note that there is no default mapping to RDF or any kind of interpretation from
the semantic properties yet. This is up to the event listeners to decide.

Deliverable 1.2 Version 1.0 71

Nepomuk 15.01.2008

Figure 39: WikiModel Version 1

Figure 40: WikiModel Version 2

Macros Macros allow for syntax extensions, which are not handled by the parser.
Similar to a verbatim block, the content is reported in its raw (unparsed) form.
Different from a verbatim block, macro blocks can have names and parameters.
The meaning of macro block is not defined by the WikiModel – it is up to the
application developer using WikiModel to interpret the content of macro blocks
and to do something specific. An example of macro syntax is:

{macroName param1=value1 param2=’Value 2’ param3="Value 3" ...}
... The content of the macro ...

{/macroName}

As an example, a user can embed HTML code within a wiki document:

{html a=’b’ c=’d’ comment=’This is a block with HTML elements’}
<table><tr><td>
Hello, world!
</td></tr></table>
{/html}

Deliverable 1.2 Version 1.0 72

Nepomuk 15.01.2008

Feature WikiModel 1 WikiModel 2

Parser JavaCC-grammar based JavaCC-grammar based

Embedded documents yes yes

Semantic statements
about documents

yes yes

Syntax only CommonSyntax any; can be mixed

Performance moderate high

Figure 41: Evolution of WikiModel

6.1.3 Evolution of WikiModel

A brief overview on the evolution of the WikiModel component can be found in
Fig. 41. Although more parts of WikiModel 1 (c. f. Fig. 39) are implemented,
the version 2 (c. f. Fig. 40) has an improved design and other benefits. Other
improvements of WikiModel 2 compared to WikiModel 1:

• Extended document schema for greater flexibility

• Extended CommonSyntax to allow expressing all WikiModel elements

• Possible to work with documents written with multiple syntaxes

• Parsers for multiple wiki syntaxes are available (JspWiki, XWiki, MediaWiki,
Creole, GoogleCode wiki, ...)

6.1.4 Using WikiModel

The usage of WikiModel is exemplified in Fig. 42. First, a WikiParser is created.
At this time, the developer decides which syntax to use. The text is read via a
reader and events are routed to an event listener. Finally the parser is run over the
input and delivers WEM events to the listener.

WikiModel will be used in the next iteration of HKW.

6.2 Structured Text Interchange Format (STIF)

The Structured Text Interchange Format (STIF) defines a small, manageable subset
of XHTML (et al. 2002) focusing on structural elements.

Valid elements to be used in STIF are:

Headlines <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

Block elements <p>, <pre>, <div> and <hr>

Lists <dl>, <dd>, <dt>, , ,

Tables <table>, <tr>, <th>, <td>

Inline elements , , <code> and

Images with attribute src

Links <a> with attribute href

Deliverable 1.2 Version 1.0 73

Nepomuk 15.01.2008

Figure 42: WikiModel Syntax Example 2

All other elements and attributes may be ignored or may be processed by a STIF-
conforming processor. The element nesting rules are the same as for XHTML.

A valid STIF document may contain an HTML header such as

<html>
<head>

<title>some title here</title>
... further header info here ...

</head>
<body>

... main content goes here ...
</body>

</html>

It is also valid to used STIF elements directly in plain text. A valid STIF document
could look like

The brown fox quickly jumps over the fence.

Different kind of hyperlinks may be indicated in STIF via the use of CSS (kon
Wium Lie & Bos 1999) classes.

Wiki links From a users point of view, it is relevant to distinguish wiki links
which point to an entity within the same local address space and which
will have a similar look and feel from external links which point to arbi-
trary web sites. STIF uses class="external" to mark external links and
class="internal" to denote local links.

Deliverable 1.2 Version 1.0 74

Nepomuk 15.01.2008

Auto-linking Some systems support automatic linking of text with pages, e. g.
using NLP. From a users point of view, it is relevant to know if a link
was stated explicitly by as human or has been created by heuristics. Ex-
plicit links are marked with class="explicit" and automatic links with
class="automatic". Note that CSS allows to have multiple classes
on an element, hence a link can very well be e. g. class="internal
automatic", order of values does not matter.

Page creation A specialty of wiki links is their ability to point to non-existing
pages. Often such links are rendered with a trailing question mark. If the
user clicks on such a link the page is created and the user can fill it with
content. STIF marks links to existing pages with the CSS class existing
and links to non-existing pages with nonexisting. Note that usually only
pages to other wiki pages can be non-existing.

STIF will be used to persist wiki content in the next versions of HKW.

6.3 The Wiki Syntax for HKW

HKW (c. f. Sec. 3) uses wiki syntax on two levels: structural and semantic. This
section describes extensions to the WikiModel CommonSyntax. These extensions
will be used in the next releases of HKW.

Structure For the structural part, which is parsed first, HKW uses the WikiModel
CommonSyntax (c. f. Sec. 6.1). This allows rendering the content of Items in
a more pleasant way. It turns hyperlinks into clickable items.

From a CDS point of view, all links are turned into items linked by has target.

Semantics On the semantic layer, the WikiModel syntax consists of two main
ideas: Detecting NameItems and parsing structures into formal statements.
Both is performed by the CDS syntax component 28.

Detecting NameItems Parsing NameItems is similar to named entity recogni-
tion in NLP, yet different. In NLP, there exist a number of approaches, of which
most ultimately use a gazetteer list, i. e. a simple list of known names. The CDS
syntax combines both ways to add elements to the list of known elements and
detects usages of existing ones.

The following syntax snippet shows the use of link syntax to introduce new Name-
Items. Each NameItem is addressed via a URI. Right after their definition the
parser knows it and correctly detects subsequent mentions of the same name.

My name is [Dirk] .
Dirk is a cool name.

After parsing:

My name is Dirk .
Dirk is a cool name.

In HKW, first the WikiModel parser turns [Dirk] into <a class="internal
explicit" href="Dirk">Dirk which is then further processed by an
Auto-Linker component.

The Auto-Linker first tokenises the text to determine possible auto-links. This
avoids linking to parts of words, e. g. linking“Jacobsson”as“[Jacob]sson”. Tokeni-
sation is performed at the characters space, newline, tabulator, quotation marks
("), apostrophe (’), full stop (.), comma (,), semicolon (;), exclamation mark
(!), question mark (?), open brace ((), closing brace ()), open square bracket
([), and closing square bracket (]).

28http://semweb4j.org/site/cds.syntax

Deliverable 1.2 Version 1.0 75

http://semweb4j.org/site/cds.syntax

Nepomuk 15.01.2008

Parsing Statements After detecting all NameItems, the parser goes on and uses
the structure and additional syntax patterns to derive semantic statements.

As syntax patterns, the parser can parse a subset of Turtle29 syntax for triples as
in the following example:

[Claudia] [knows] [Dirk] .
Dirk [knows] [Claudia] , [Martin].

The following statements are created then in the model:

stmt1: Claudia - knows - Dirk
stmt2: stmt1 - has provenance - wikiPage
stmt3: Dirk - knows - Claudia
stmt4: stmt3 - has provenance - wikiPage
stmt5: Dirk - knows - Martin
stmt6: stmt5 - has provenance - wikiPage

The general syntax allows patterns of this form spo. with ways to use multiple
objects as in spo1, o2, o3. or multiple predicates as in sp1o1; p2o2; p3o3. Of course,
both shorthands can be combined as in sp1o1, o2, o3; p2o5, o6, . . . pnom..

Each triple is represented as a Statement. The parser also records provenance
information so that one can keep track from which Item the Statement has been
inferred. This makes correction of errors easier.

As a second option, the user can mix wiki syntax for structures and re-use these
structures to yield statements. As an example, consider this wiki syntax snippet:

[Dirk]

* [knows]

** [Claudia]

** [Martin]

* [works at] [SAP]

* [age] : 26

Converted to HTML this might look like:

[Dirk]

[knows]

[Claudia]
[Martin]

[works at] [SAP]
[age] : 26

As the parser operates on the generated XHTML, the structural wiki syntax to
create lists is independent of the interpretation of lists.

The HTML list in our example yields the following triples in the model:

stmt1: Dirk - knows - Claudia
stmt2: stmt1 - has provenance - wikiPage
stmt3: Dirk - knows - Martin
stmt4: stmt3 - has provenance - wikiPage
stmt5: Dirk - works at - SAP
stmt6: stmt5 - has provenance - wikiPage
stmt7: Dirk - age - "26";
stmt8: stmt7 - has provenance - wikiPage

29http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/

Deliverable 1.2 Version 1.0 76

http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/

Nepomuk 15.01.2008

Again, the provenance is recorded.

A NameItem used before the list is understood as a subject, list items are parsed
as predicates. If a list item contains a colon (“:”), the remainder of the line is
parsed as an object, more specifically as an Item. If the list item has no colon, but
second-level list items underneath, those are parsed as objects instead.

Alternatively, if there is no NameItem above the list, the top-level list element itself
is understood as a subject, subitems are parsed as predicates. If a second-level list
item contains a colon (“:”), the remainder of the line is parsed as an object, more
specifically as an Item. If the second-level list item has no colon, but third-level
list items underneath, those are parsed as objects instead.

Fourth-level list elements are simply ignored. All other invalid structures also yield
no statements.

6.4 BounceIt: Semantic Publishing

Based on the requirements identified in the Bioscience case study (workpackage
8) and confirmed in two other case studies, we have been developing a system
that unifies the processes of messaging, blogging, and wiki while adding semantic
aspects for better control, integration, and information retrieval. This system,
called BounceIt, is based on the Semantic Pad wiki that was developed in the first
year of Workpackage 1. Given that information on our desktops is rarely purely
personal, BounceIt provides a much-needed smooth integration between personal
and shared information. The goal is to integrate BounceIt with the CDS system in
the final year of the workpackage.

BounceIt GUI is based on Web browsers. In particular, we used the Google Widget
Toolkit (GWT) framework which is a stable and highly scalable platform for devel-
opment of dynamic AJAX-based interfaces. Although initially BounceIt is designed
to work off of a central server, we are also considering to use the Google Gear
project to give users a possibility to work in a disconnected mode. This technology
would increase the level of integration of BounceIt with the Personal Knowledge
Workbench.

Functionalities implemented so far include:

• Read, write, and comment access rights via BounceIt that can be specified
based semantic properties (e.g., an access can be specified as follows: ”allow
person X to read and comment anything on a given topic”); open access to
the general public.

• BounceIt allows users to create new accounts and groups without special
administrative rights; users can be added to a group simply by giving them
access to the group’s information.

• BounceIt allows wiki-based collaboration and conversations around the wiki
pages, that can have independent access rights allowing various sub-groups
to communicate within the same informational context.

• A Mozilla Firefox plug-in that allows to easily save an annotated hyperlink
for later use or to send it to other people via BounceIt.

• Export from Wikipedia into BounceIt

• Inclusion of Google Maps into BounceIt, export and import of location infor-
mation.

Below is a list of functionalities planned for the future:

• Re-integrate Text Analytics for related items detection

• Moderation of communication within a group; automatic extraction of social
links from communications between users.

Deliverable 1.2 Version 1.0 77

Nepomuk 15.01.2008

• BounceIt should allow users a simple way to specify the level of information
urgency: notify by email (immediately, daily, weekly...), show in portal, re-
move; these operations apply to different information channels defined by
a combination of various properties such as sender, addressee, topic, title,
keyword, or type of modification (edit or comment).

• Versioning

• Integration with Nepomuk Middleware (both semantic and P2P parts) as
well as with the CDS system.

Integration with CDS There are two ways how the Hypertext-based Knowledge
Workbench (HKW) could be integrated with BounceIt. First, personal CDS knowl-
edge models could be published as a network of bounces, as the items in BounceIt
are called.

Second, a number of bounces could be imported to a personal knowledge model in
CDS, or as a subcase of that, publicly accessible bounces could be annotated and
interlinked in the personal model.

Deliverable 1.2 Version 1.0 78

Nepomuk 15.01.2008

7 Summary and Outlook

In this deliverable we have introduced the concept and origins of CDS. We have
presented the two parts, the SWCM data model and the CDS ontology. We de-
scribed in depth the process and rationale for building the CDS core ontology of
relations.

In Section 3 we presented the current prototype of our CDS editor, the Hypertext
Knowledge Workbench (HKW), which is based on the CDS API. The usability
assessment of the prototype will guide further refinement of the visual properties.

A second prototype, although in earlier stages, is the Visual Knowledge Workbench
(VKW) which was presented in Sec. 4. We also introduced QuiKey, a semantic
desktop visual command line.

Besides manual ways to create structures and formal statements, we also investi-
gated less exact but more automated ways to extract structures and meaning from
natural language text (Sec. 5). Such services will be integrated in CDS-based tools.
We presented a text mining component from IBM, which is able to disambiguate
terms or find related items, based on sophisticated analysis and NLP techniques.
NLP support services include keyword extraction and speech act identification for
a semantic email client. Authoring Tools included CLIE - Controlled Language
for Information Extraction to create Ontologies using Controlled Natural Language
and SALT, can be used to author text, semantics and structure at the same time
and keep this information when producing a printable, shareable PDF document
from it.

Finally we presented the ongoing use of wiki technology, most notably the Wiki-
Model framework. We presented WikiModel in depth and also some extensions for
integration in CDS tools.

7.1 Outlook

Several steps are planned for the remaining time of the project NEPOMUK. The
CDS tools will be refined and integrated.

7.1.1 CDS

Currently, the RDF binding of SWCM uses its own ontology, decoupled from the
NEPOMUK ontology framework. The following migration is planned in year 3 of
the project:

NameItems: SWCM will use nao:personalIdentifier, from the NEPO-
MUK Annotation Ontology, to link URIs to unique strings.

Item To store the content, SWCM will use nao:prefLabel. Storing binary
content, which is possible in SWCM, will be integrated into NEPOMUK.
Most likely properties from NIE, the NEPOMUK Information Elements can
be used.

We plan a tighter integration with existing desktop data sources and the CDS API.
All CDS tools will profit from this integration. The following changes are planned
for tighter integration with the NEPOMUK infrastructure:

• The BinStore component will be refactored into a NEPOMUK service and
accessed by the NEPOMUK swecr.core adapter. This ensures that sev-
eral instances of CDS-based tools as well as other services can all access the
same set of binary content.

• The concept of data sources (depicted in Fig. 43) will allow to treat several
kinds of models as dynamic (read-only) parts of the CDS data model. Via

Deliverable 1.2 Version 1.0 79

Nepomuk 15.01.2008

this bridge the user will be able to browse – and annotate and link – her
PIMO concepts, desktop files, and task items.

• The WikiModel component from Cognium Systems, plus our own extensions,
will be integrated into the CDS API. The core data model behind WikiModel
is a tree of documents (via the sub-document concept) which fits naturally
into CDS notion of has detail/has context.

• NEPOMUKs NLP services will be called from the CDS implementation to
help the user e g. to tag items and to find related concepts.

• To ease integration with PIMO the native RDF format of the CDS implemen-
tation will be adapted to use the NEPOMUK Annotation Ontology (NAO,
30) and PIMO (e. g. all items will be linked to the users PIMO via

7.1.2 HKW

Based on the feedback of the expert evaluation, we started already to work on an
improved HKW prototype. A design preview is depicted in Fig. 44.

To ease migration (and evaluation) of further HKW versions, we work on importing
existing personal (semantic) wikis which are in use today among researchers (e. g.
JSPWiki, Semantic MediaWiki) into a CDS model. The goal for year three is to
turn semantic wiki users into HKW users.

7.1.3 Semantic Email and Blogging

Semantic Blogging Semantic Blogging means to attach formal metadata (e. g.
RDF) to ordinary blog posts. Such metadata can be content-related - formal de-
scriptions of what a blogger writes about - or structural - formal description about

30http://www.semanticdesktop.org/ontologies/nao/

Kernel File SystemNetworkLiberaries

HKW

CDS-API

Swecr.Core.NEPOMUK

Simple

BinStore

Swecr. Core.API

CdsModel

RDF2Go

ModelSet
Lucene IBinStore

Data

Source

PIMO

NRL
RDF

Figure 43: Planned Integration

Deliverable 1.2 Version 1.0 80

http://www.semanticdesktop.org/ontologies/nao/

Nepomuk 15.01.2008

how blogs and blog posts relate to each other. In the context of NEPOMUK,
Semantic Blogging will allow users to open their personal semantic desktop envi-
ronment to other, non-NEPOMUK-enabled users.

Semanta – Semantic Email Semantic Email will be able to link selective content
of email messages to related data on the semantic desktop. Such data may consist
of resources such as people (e.g. the communication partners in the message
thread, or attendees involved in an event announcement), activities (tasks and
events assigned through email) etc.

One of the largest flaws of the email communication genre is the lack of shared
expectations about the form and content of the interaction. This can be attributed
to the lack of explicit semantics covering the context and content of exchanged
email messages. Earlier research has shown that email content can be captured
by applying speech act theory. Refining and extending this research results in
developing an email speech act ontology and outline a non-deterministic predictive
model to support the user in deciding the best course of action upon sending or
receiving an email. In the prototype, implemented as an Outlook extension, Text
Analytics will help capturing content metadata whereas a thread-based approach
will handle context metadata. Semantic Web technologies will invisibly embed both
kinds of metadata in email, hence achieving semantically-enhanced email. The
context and expectations of a message are made explicit before leaving the sender
and reaching the recipient. As a result, when receiving or sending specific emails
Outlook will know for example that a task or event has been created and will assist
the user based on the knowledge. When a new message reaches the recipient, they
will be prompted if they are expected to respond or perform some action, and so
on, In this way, email communication becomes less ambiguous and more efficient.
Semantic Email will be able to link selective content of email messages to related
data on the semantic desktop. Such data may consist of resources such as people
(e.g. the communication partners in the message thread, or attendees involved in
an event announcement), activities (tasks and events assigned through email) etc.
A prototype for the Semantic Email Client - Semanta. A beta release will occur in
Month 25 in conjunction with first ”Semanta” Prototype. We refer the reader to

7.1.4 Semantically Annotated LaTeX (SALT)

It should be possible to import the RDF extracted by SALT into a CDS model
maybe – at higher implementation costs – also the reverse: To generate a SALT
LaTeX file from a CDS model. We will explore both integration options in year 3
of NEPOMUK.

Deliverable 1.2 Version 1.0 81

Nepomuk 15.01.2008

Figure 44: Design Preview of HKW

Deliverable 1.2 Version 1.0 82

Nepomuk 15.01.2008

References

Adar, E., Karger, D. R. & Stein, L. A. (1999), Haystack: Per-user information
environments, in ‘CIKM’, ACM, pp. 413–422.

Avery, S., Brooks, R., Brown, J., Dorsey, P. & O’Conner, M. (2001), Personal
knowledge management: Framework for integration and partnerships, in ‘Proc.
of ASCUE Conf.’.

Boulos, M. N. K. (2003), ‘The use of interactive graphical maps for browsing
medical/health internet information resources’, International Journal of Health
Geographics 2(1).
URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=149401

Buzan, T. (1991), Use Both Sides of Your Brain: New Mind-Mapping Techniques,
Third Edition (Plume), Plume.
URL: http://www.amazon.ca/exec/obidos/redirect?tag=

citeulike09-20\&path=ASIN/0452266033

Chen, H.-H., Tsai, S.-C. & Tsai, J.-H. (2000), Mining tables from large scale
html texts, in ‘Proceedings of the 18th conference on Computational linguistics’,
Association for Computational Linguistics, Morristown, NJ, USA, pp. 166–172.

Cunningham, H. (1999), ‘A definition and short history of language engineering’,
Nat. Lang. Eng. 5(1), 1–16.

Cunningham, H., Maynard, D., Bontcheva, K. & Tablan, V. (2002), GATE: A
framework and graphical development environment for robust NLP tools and
applications, in ‘Proceedings of the 40th Anniversary Meeting of the Association
for Computational Linguistics’.

Dienel, H.-L. (2006), Technografie. Zur Mikrosoziologie der Technik, Campus Ver-
lag, Frankfurt/New York, chapter Schreiben, Zeichnen, Erinnern. Persönliches
Wissensmanagement im Ingenieurberuf seit 1850, pp. 397–425.

Drucker, P. F. (1985), Management: Tasks, responsibilities, practices (Harper &
Row management library), Harper & Row.

Esselborn-Krumbiegel, H. (2002), Von der Idee zum Text. Eine Anleitung zum
wissenschaftlichen Schreiben., Utb. 2. Auflage.
URL: http://www.amazon.de/gp/product/3825223345?ie=UTF8&tag=

xamde01-21&linkCode=xm2&camp=1638&creativeASIN=3825223345

et al., S. P. (2002), XHTMLTM1.0 the extensible hypertext markup language (sec-
ond edition) – a reformulation of HTML 4 in XML 1.0, Technical report, W3C.
W3C Recommendation 26 January 2000, revised 1 August 2002.
URL: http://www.w3.org/TR/xhtml1/

Frand, J. & Hixon, C. (1999), ‘Personal knowledge management : Who, what,
why, when, where, how?’, Speech. working paper.
URL: http://www.anderson.ucla.edu/faculty/jason.frand/

researcher/speeches/PKM.htm

Friedewald, M. (2000), Der Computer als Werkzeug und Medium. Die geistigen und
technischen Wurzeln des Personalcomputers, taschenbuch edn, GNT-Verlag.

Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B. & Handschuh, S.
(2007), Controlled-language information extraction for knowledge management,
in ‘Proceedings of the Sixth International Semantic Web Conference, (ISWC),
Busan, Korea’.

Furnas, G. W. (1986), Generalized fisheye views., in ‘Human Factors in Computing
Systems CHI ’86’, pp. 16–23.
URL: http://www.si.umich.edu/~furnas/Papers/FisheyeCHI86.pdf

Deliverable 1.2 Version 1.0 83

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=149401
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=149401
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0452266033
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0452266033
http://www.amazon.de/gp/product/3825223345?ie=UTF8&tag=xamde01-21&linkCode=xm2&camp=1638&creativeASIN=3825223345
http://www.amazon.de/gp/product/3825223345?ie=UTF8&tag=xamde01-21&linkCode=xm2&camp=1638&creativeASIN=3825223345
http://www.w3.org/TR/xhtml1/
http://www.anderson.ucla.edu/faculty/jason.frand/ researcher/speeches/PKM.htm
http://www.anderson.ucla.edu/faculty/jason.frand/ researcher/speeches/PKM.htm
http://www.si.umich.edu/~furnas/Papers/FisheyeCHI86.pdf

Nepomuk 15.01.2008

Gazdar, G. (1996), Paradigm merger in natural language processing, Cambridge
University Press, pp. 88–109.
URL: http://citeseer.ist.psu.edu/gazdar96paradigm.html

Grebner, O., Ong, E., Riss, U., Brunzel, M., Bernardi, A. & Roth-Berghofer, T.
(2006), Task management model, Technical Report 1.1, The NEPOMUK con-
sortium.

Groza, T., Handschuh, S., Möller, K. & Decker, S. (2007), Salt - semantically
annotated latex for scientific publications, in E. Franconi, M. Kifer & W. May,
eds, ‘ESWC’, Vol. 4519 of Lecture Notes in Computer Science, Springer, pp. 518–
532.

Groza, T., Möller, K., Handschuh, S., Trif, D. & Decker, S. (2007), Salt: Weaving
the claim web, in K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. J. B.
Nixon, J. Golbeck, P. Mika, D. Maynard, G. Schreiber & P. CudrÃ c©-Mauroux,
eds, ‘Proceedings of the 6th International Semantic Web Conference and 2nd
Asian Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea’, Vol.
4825 of LNCS, Springer Verlag, Berlin, Heidelberg, pp. 197–210.
URL: http://iswc2007.semanticweb.org/papers/197.pdf

Haller, H. (2003), ‘Mappingverfahren zur Wissensorganisation’. Knowledge Board
Europe.
URL: http://heikohaller.de/literatur/diplomarbeit/

Haller, H. (2006), imapping - a graphical approach to semi-structured knowledge
modelling, in L. Rutledge, ed., ‘Proceedings of the The 3rd International
Semantic Web User Interaction Workshop (SWUI2006)’. Poster and extended
abstract presented at the The 3rd International Semantic Web User Interaction
Workshop.
URL: http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/

iMapping_SWUI2006_paper.pdf

Hayes, P. (2004), RDF semantics, Recommendation, W3C.
URL: http://www.w3.org/TR/rdf-mt/

Hennum, E. (2006), Representing discourse models in rdf, in ‘Extreme Markup
Languages 2006 (R)’, Montréal, Québec.

Hurst, M. (2000), The interpretation of tables in texts, PhD thesis, University of
Edinburgh.

InfoVis Wiki (n.d.), availlable online.
URL: http://www.infovis-wiki.net/index.php/Semantic_Zoom

Jones, W. & Bruce, H. (2005), ‘A report on the nsf-sponsored workshop on personal
information management’, report.

Jones, W., Bruce, H. & Dumais, S. (2001), Keeping found things found on the web,
in ‘CIKM ’01: Proceedings of the tenth international conference on Information
and knowledge management’, ACM Press, New York, NY, USA, pp. 119–126.

Jones, W., Phuwanartnurak, A. J., Gill, R. & Bruce, H. (2005), Don’t take my
folders away!: organizing personal information to get ghings done, in G. C.
van der Veer & C. Gale, eds, ‘CHI Extended Abstracts’, ACM, pp. 1505–1508.

Khosravi, H. & Wilks, Y. (1999), ‘Routing email automatically by purpose not
topic’, Nat. Lang. Eng. 5(3), 237–250.

Kinsella, S., Harth, A., Troussov, A., Sogrin, M., Judge, J., Hayes, C. & Breslin,
J. G. (2007), Navigating and annotating semantically-enabled networks of people
and associated objects, in T. Friemel, ed., ‘Proceedings of Applications of Social
Network Analysis’.
URL: http://www.friemel.com/asna/

Deliverable 1.2 Version 1.0 84

http://citeseer.ist.psu.edu/gazdar96paradigm.html
http://iswc2007.semanticweb.org/papers/197.pdf
http://heikohaller.de/literatur/diplomarbeit/
http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/iMapping_SWUI2006_paper.pdf
http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/iMapping_SWUI2006_paper.pdf
http://www.w3.org/TR/rdf-mt/
http://www.infovis-wiki.net/index.php/Semantic_Zoom
http://www.friemel.com/asna/

Nepomuk 15.01.2008

kon Wium Lie, H. & Bos, B. (1999), Cascading style sheets, level 1, Technical
Report REC-CSS1-19990111, W3C. W3C Recommendation 17 Dec 1996, revised
11 Jan 1999.

Kotelnikov, M., Polonsky, A., Kiesel, M., Völkel, M., Haller, H., Sogrin, M., Lan-
nerö, P. & Davis, B. (2006), Interactive semantic wikis, Technical Report 1.1,
The NEPOMUK consortium.

Krötzsch, M., Vrandecic, D. & Völkel, M. (2006), Semantic mediawiki, in I. Cruz,
S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold & L. Aroyo,
eds, ‘Proceedings of the 5th International Semantic Web Conference (ISWC06)’,
Vol. 4273 of Lecture Notes in Computer Science, Springer, Athens, GA, USA,
pp. 935–942.

Kunz, W. & Rittel, H. W. J. (1970), Issues as elements of information systems,
Technical report wp-131, University of California, Berkeley.

Marshall, C. C. (2007), Keeping Found Things Found: The Study and Practice
of Personal Information Management (Interactive Technologies) (Interactive
Technologies), Morgan Kaufmann, chapter How People Manage Information
over a Lifetime.
URL: http://www.amazon.de/exec/obidos/ASIN/0123708664/

xamde01-21

McQuaid, H. L. & Bishop, D. (2001), An integrated method for evaluating inter-
faces, in ‘CHI ’01: CHI ’01 extended abstracts on Human factors in computing
systems’, ACM, New York, NY, USA, pp. 287–288.

Mitchell, A. (2005), ‘The rise of personal km’, Inside Knowledge 9(1).

Nelson, T. H. (1995), ‘The heart of connection: hypermedia unified by transclu-
sion’, Commun. ACM 38(8), 31–33.

Nielsen, J. (2005), ‘Ten usability heuristics’, online, retrieved 19 December 2007.
URL: http://www.useit.com/papers/heuristic/heuristic_list.

html

North, K. (2007), Produktive wissensarbeit, in ‘5. Karlsruher Symposium für Wis-
sensmanagement in Theorie und Prxais’. CD-ROM.

Oren, E., Völkel, M., Breslin, J. G. & Decker, S. (2006), Semantic wikis for personal
knowledge management, in ‘Database and Expert Systems Applications’, Vol.
4080/2006, Springer Berlin / Heidelberg, pp. 509–518.

Pivk, A., Cimiano, P. & Sure, Y. (2005), ‘From tables to frames’, Elsevier’s Journal
of Web Semantics: Science, Services and Agents on the World Wide Web 3(2-
3), 132–146. Selected Papers from the International Semantic Web Conference
(ISWC) 2004, Hiroshima, Japan, 07-11 November 2004.

Polanyi, M. (1958), Personal Knowledge: Towards a Post-Critical Philosophy,
Routledge & Kegan Paul Ltd, London.

Polanyi, M. (1998), Personal Knowledge, Routledge.

Probst, G., Raub, S. & Romhardt, K. (2006), Wissen Managen: Wie Unternehmen
ihre wertvollste Ressource optimal nutzen, 5 edn, Gabler Verlag.

Prud’Hommeaux, E. & Seaborne, A. (2007), ‘Sparql’, W3C Candidate Recommen-
dation.
URL: http://www.w3.org/TR/rdf-sparql-query/

Quan, D., Huynh, D. & Karger, D. R. (2003), Haystack: A platform for authoring
end user semantic web applications., in ‘Int. Semantic Web Conf.’, pp. 738–753.

Quillan, M. R. (1966), Semantic Memory, Bolt, Bernak, and Newman, Cambridge,
MA.

Deliverable 1.2 Version 1.0 85

http://www.amazon.de/exec/obidos/ASIN/0123708664/xamde01-21
http://www.amazon.de/exec/obidos/ASIN/0123708664/xamde01-21
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.useit.com/papers/heuristic/heuristic_list.html

Nepomuk 15.01.2008

Richter, J., Völkel, M. & Haller, H. (2005), Deepamehta - a semantic desktop,
in S. Decker, J. Park, D. Quan & L. Sauermann, eds, ‘Proceedings of the
1st Workshop on The Semantic Desktop. 4th International Semantic Web
Conference (Galway, Ireland)’, Vol. 175, CEUR-WS.
URL: http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/

ISWC05-SemanticDesktopWorkshop_DeepaMehta_longpaper.pdf

Scerri, S. (2007), Aiding the workflow of email conversations by enhancing email
with semantics, in ‘PhD Symposium, ESWC’, Innsbruck, Austria.

Shneiderman, B. (1996), The eyes have it: A task by data type taxonomy for
information visualizations, in ‘VL ’96: Proceedings of the 1996 IEEE Symposium
on Visual Languages’, IEEE Computer Society, Washington, DC, USA.
URL: http://portal.acm.org/citation.cfm?id=832277.834354

Shneiderman, B. & Plaisant, C. (2004), Designing the User Interface: Strategies
for Effective Human-Computer Interaction (4th Edition), Addison Wesley.

Tablan, V., Polajnar, T., Cunningham, H. & Bontcheva, K. (2006), User-friendly
ontology authoring using a controlled language, in ‘5th Language Resources and
Evaluation Conference’.

Taboada, M. & Mann, W. C. (2006), ‘Rhetorical structure theory: Looking back
and moving ahead’, Discourse Studies pp. 423–459.

Völkel, M. (2007), A semantic web content model and repository, in ‘Proceedings
of the 3rd International Conference on Semantic Technologies’.
URL: http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.

pdf

Völkel, M. & Haller, H. (2006), Conceptual data structures (cds) – towards an
ontology for semi-formal articulation of personal knowledge, in ‘Proc. of the 14th
International Conference on Conceptual Structures 2006’, Aalborg University -
Denmark.

Völkel, M., Haller, H. & Abecker, A. (2007), Modelling higher-level thought struc-
tures - method and tool, in ‘Proceedings of Workshop on Foundations and Ap-
plications of the Social Semantic Desktop’.

Deliverable 1.2 Version 1.0 86

http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/ISWC05-SemanticDesktopWorkshop_DeepaMehta_longpaper.pdf
http://www.aifb.uni-karlsruhe.de/WBS/hha/papers/ISWC05-SemanticDesktopWorkshop_DeepaMehta_longpaper.pdf
http://portal.acm.org/citation.cfm?id=832277.834354
http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.pdf
http://xam.de/2007/2007-05-voelkel-ISEMANTICS-swcm-CR.pdf

Nepomuk 15.01.2008

A Appendix: CDS Ontology

@prefix : <#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix swcm: <http://purl.org/net/swecr#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix cds: <http://www.semanticdesktop.org/ontologies/2007/09/cds/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

cds:hasAnnotationMember
cds:hasSuperRelation

cds:hasTarget .

cds:isAliasOf cds:hasSubRelation cds:replaces .

cds:hasAlias cds:hasSuperRelation cds:hasSimilar .

cds:hasRelated
cds:hasSubRelation cds:hasSimilar , cds:hasSource .

cds:hasAfter cds:hasSuperRelation cds:hasTarget .

cds:hasDetail
cds:hasSubRelation cds:hasSubType , cds:hasSubRelation ;
cds:hasSuperRelation

cds:hasTarget .

cds:hasAnnotation cds:hasSubRelation cds:hasTag .

cds:hasSimilar
cds:hasSubRelation cds:hasAlias , cds:sameAs ;
cds:hasSuperRelation cds:hasRelated .

cds:hasTag
cds:hasSubRelation cds:hasType ;
cds:hasSuperRelation cds:hasAnnotation .

cds:hasTarget cds:hasSubRelation
cds:hasAnnotationMember , cds:hasAfter , cds:hasDetail .

cds:hasSubType cds:hasSuperRelation cds:hasDetail .

cds:hasSubRelation cds:hasSuperRelation cds:hasDetail .

cds:hasSource cds:hasSuperRelation cds:hasRelated .

cds:hasType cds:hasSuperRelation cds:hasTag .

cds:sameAs cds:hasSuperRelation cds:hasSimilar .

cds:replaces cds:hasSuperRelation cds:isAliasOf .

Deliverable 1.2 Version 1.0 87

	Introduction
	Conceptual Data Structures (CDS)
	Personal Knowledge Management (PKM)
	Requirements
	Relevant Categories
	Most Popular Instances for each Category
	Analysis of Data Models and their Relation Types

	Data Model Layer -- Semantic Web Content Model (SWCM)
	SWCM in a Nutshell
	Semantics

	CDS Ontology Layer
	A Subsumption Hierarchy Of Common Relations
	Semantics

	Using CDS
	Evaluation wrt. Requirements

	Realisation

	Hypertext-based Knowledge Workbench (HKW)
	Design
	User Guide
	Realisation
	Evaluation
	Expert Evaluation -- Method
	Expert Evaluation -- Results
	End-User Feedback

	Visual Knowledge Workbench
	iMapping
	iMapping Design principles
	iMapping GUI
	iMapping data Model
	Implementation Status
	Expert Evaluation (Flash GUI Prototype)
	End-User Evaluation (Java Prototype)

	QuiKey
	Interaction
	Current State of Implementation / Future Work
	Integration / Possible Applications of QuiKey

	Natural Language Tools
	Text Miner and Semantic Analysis Component
	Language Processing Support Services
	Keyword Extraction
	Speech Act identification
	Text Analysis and CDS

	Semantic Authoring with SALT
	Human Language Technology(HLT)
	Ontology authoring using Controlled Natural Language
	Text generation of Ontologies

	CDS and Wikis
	WikiModel 2.0
	Design
	Complete Syntax Description
	Evolution of WikiModel
	Using WikiModel

	Structured Text Interchange Format (STIF)
	The Wiki Syntax for HKW
	BounceIt: Semantic Publishing

	Summary and Outlook
	Outlook
	CDS
	HKW
	Semantic Email and Blogging
	Semantically Annotated LaTeX (SALT)

	References
	Appendix: CDS Ontology

